
Edward J. Hall, Nathan J. Heidegger, and Robert A. Delaney
Allison Engine Company, Indianapolis, Indiana

ADPAC v1.0 – User’s Manual

NASA/CR—1999-206600

February 1999

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076

Edward J. Hall, Nathan J. Heidegger, and Robert A. Delaney
Allison Engine Company, Indianapolis, Indiana

ADPAC v1.0 – User’s Manual

NASA/CR—1999-206600

February 1999

National Aeronautics and
Space Administration

Lewis Research Center

Prepared under Contract NAS3–27394 Task 15

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076
Price Code: A12

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Price Code: A12

Contents

1 SUMMARY 1

2 INTRODUCTION 3

2.1 Multiple-Block Solution Domain Concepts . 3

2.2 Multiple Blade Row Solution Concepts . 5

2.3 2-D/3-D Solution Zooming Concepts . 9

2.4 Multi-grid Convergence Acceleration Concepts 10

2.5 General Solution Procedure Sequence . 11

2.6 Consolidated Serial/Parallel Code Capability 15

2.7 Parallelization Strategy . 15

3 ADPAC : 3-D EULER/ NAVIER-STOKES FLOW SOLVER OPERATING IN-
STRUCTIONS 17

3.1 Introduction to ADPAC . 17

3.2 General Information Concerning the Operation of the ADPAC Code 17

3.3 Con�guring ADPAC Maximum Array Dimensions 18

3.4 ADPAC Compilation Using Make�le . 22

3.5 ADPAC Input/Output Files . 27

3.6 ADPAC Standard Input File Description . 29

3.7 ADPAC Boundary Data File Description . 53

BCINT1 . 62

BCINTM . 66

BCPRM . 71

BCPRR . 74

BCDATIN . 79

BCDATOU . 82

ENDDATA . 85

ENDTTA . 87

EXITG . 90

EXITN . 93

EXITP . 95

EXITT . 98

EXITX . 101

EXT2DP . 104

NASA CR{206600 i

EXT2DT . 107

FIXED . 110

FRE2D . 112

FREE . 114

INL2DA . 117

INL2DT . 119

INLETA . 121

INLETG . 124

INLETN . 127

INLETR . 129

INLETT . 132

INLETX . 135

KIL2D . 138

KILL . 141

LAMSS . 144

MBCAVG . 147

PATCH . 150

PINT . 154

PROBE . 156

SSIN . 159

SSVI . 161

SYSTEM . 164

3.8 Mesh File Description . 166

3.9 Body Force File Description . 168

3.10 Standard Output File Description . 170

3.11 Plot File Description . 170

3.12 Restart File Description . 172

3.13 Convergence File Description . 175

3.14 Image File Description . 176

3.15 Running ADPAC With The One-Equation Turbulence Model 176

3.16 Running ADPAC With Two-Equation Turbulence Model 177

3.17 Troubleshooting an ADPAC Failure . 178

4 RUNNING ADPAC IN PARALLEL 183

4.1 Description of Parallel Solution Sequence . 183

4.2 SIXPAC (Block Subdivision) Program . 188

4.3 BACPAC . 192

4.4 Parallel ADPAC Block/Processor Assignment 194

5 ADPAC INTERACTIVE GRAPHICS DISPLAY 197

5.1 Setting up the Program . 197

5.2 Graphics Window Operation . 198

5.3 AGTPLT-LCL Program Description . 199

ii NASA CR{206600

6 ADPAC UTILITY PROGRAMS 201

6.1 MAKEADGRID Program Description . 201

6.2 COARSEN Tool Program Description . 201

6.3 ADSPIN Tool Program Description . 202

6.4 ADSTAT Tool Program Description . 202

6.5 AOA2AXI Tool Program Description . 202

6.6 PATCHFINDER Tool Program Description . 203

6.7 Miscellaneous Tool Programs Description . 204

6.8 PLOTBC Tool Program Description . 204

A ADPAC NAVIER-STOKES NUMERICAL ALGORITHM 211

A.1 Nondimensionalization . 211

A.2 Governing Equations . 212

A.3 Fluid Properties . 219

A.4 Numerical Formulation . 219

A.5 Boundary Conditions . 232

A.6 Turbulence Models . 235

A.7 Algebraic Baldwin-Lomax Turbulence Model 236

A.8 One-Equation Spalart-Allmaras Turbulence Model 240

A.9 Two-Equation Turbulence Model . 242

B PARALLEL ADPAC EXECUTION SCRIPT 247

NASA CR{206600 iii

List of Figures

2.1 ADPAC 2-D single-block and multiple-block mesh structure illustration. 4

2.2 Coupled H-O-H grid system and computational domain communication scheme
for compressor fan grid system. For clarity, only a single j=constant mesh slice
extracted from a 3-D mesh system is shown. 6

2.3 Several approaches can be used to obtain multiple blade row numerical solutions. 7

2.4 2-D axisymmetric ow representation of a turbomachinery blade row. 9

2.5 Typical fan rotor owpath geometry including bypass splitter. 10

2.6 Multi-grid mesh coarsening strategy and mesh index relation. 11

2.7 Typical sequence of tasks employed during an ADPAC analysis. 12

3.1 Sample ADPAC parameter �le speci�cation (parameter.inc). 19

3.2 Sample ADPAC input �le speci�cation (case.input). 31

3.3 Variation of Ccp and CKleb with Coles wake factor (�). 33

3.4 ADPAC body-centered mesh turbulence model nomenclature summary. 35

3.5 ADPAC input keyword multi-grid cycle and time-marching iteration management
owchart. 39

3.6 ADPAC rotational speed orientation illustration. 52

3.7 Location of XMOM, YMOM, and ZMOM with respect to the calculation of
moment components. 54

3.8 ADPAC 3-D boundary condition speci�cation. 55

3.9 E�ect of ordering in application of boundary conditions for the ADPAC code. . 56

3.10 ADPAC boundary data �le speci�cation format. 57

3.11 Sample ADPAC boundary condition data �le speci�cation (case.boundata). . . 61

3.12 ADPAC INLETR boundary speci�cation ow angle reference 131

3.13 ADPAC INLETT boundary speci�cation ow angle reference 134

3.14 ADPAC mesh coordinate reference description. 166

iv NASA CR{206600

3.15 All ADPAC mesh systems must have a left-handed coordinate system description.167

3.16 Sample ADPAC convergence �le (case.convergence). 175

4.1 Illustration of domain decomposition parallel computing using the ADPAC code
on a multiprocessor computing architecture. 184

4.2 Illustration of domain decomposition parallel computing using the ADPAC code
on a network-connected workstation cluster computing architecture. 184

4.3 Illustration of ADPAC master-slave coding style and data input/output process-
ing for parallel computing. Note that only the root process (Node 0) needs access
to the data disk. The con�guration shown represents a nine-node workstation
cluster (nodes numbered 0-8). 185

4.4 Illustration of ADPAC code programming structure for parallel communication
using the native APPL interprocessor communication interface. 186

4.5 Illustration of ADPAC code programming structure for parallel communication
using the native APPL procedure calls, applpvm translation library, and the
PVM interprocessor communication library. 186

4.6 Illustration of ADPAC code programming structure for parallel communication
using the native APPL procedure calls, applmpi translation library, and the
MPI interprocessor communication library. 186

4.7 Careful block division can preserve levels of multi-grid. 190

4.8 Sample input �le for SIXPAC block division utility. 190

4.9 Sample input �le employing user-speci�ed block divisions for SIXPAC block di-
vision utility. 191

4.10 Sample input �le for BACPAC utility. 193

4.11 Sample case.blkproc �le used to distribute mesh blocks over parallel processors
within ADPAC . 194

5.1 ADPAC interactive graphics display network con�guration options. 198

6.1 Sample input �le for PATCHFINDER utility. 203

A.1 ADPAC Cartesian coordinate system reference. 215

A.2 ADPAC cylindrical coordinate system reference. 217

A.3 Three-dimensional �nite volume cell. 221

A.4 ADPAC �nite volume cell centered data con�guration and convective ux eval-
uation process. 222

A.5 ADPAC �nite volume cell centered data con�guration and di�usive ux evalua-
tion process. 223

NASA CR{206600 v

A.6 Multi-grid V-cycle strategy. 229

A.7 2-D mesh block phantom cell representation. 232

A.8 Near-wall computational structure for wall function turbulence model. 239

vi NASA CR{206600

List of Tables

3.1 Description of input/output �les and UNIX-based �lenames for ADPAC 28

NASA CR{206600 vii

Notation

A list of the symbols and acronyms used throughout this document and their de�nitions is
provided below for convenience.

Roman Symbols

a : : : speed of sound

cf : : : skin friction coe�cient

cp : : : gas speci�c heat at constant pressure

cv : : : gas speci�c heat at constant volume

e : : : total internal energy

i : : : �rst grid index of numerical solution

j : : : second grid index of numerical solution

k : : : third grid index of numerical solution or thermal conductivity

k : : : turbulent kinetic energy

l : : : Van Driest damping function

n : : : rotational speed (revolutions per second) or time step level

p : : : pressure

r : : : radius or radial coordinate

t : : : time

vx : : : velocity in the Cartesian coordinate system x direction

vy : : : velocity in the Cartesian coordinate system y direction

vz : : : velocity in the Cartesian coordinate system z direction

vr : : : velocity in the cylindrical coordinate system radial direction

v� : : : velocity in the cylindrical coordinate system circumferential direction

wrel : : : relative velocity in the circumferential direction (= v� � r!)

x : : : Cartesian coordinate system coordinate

y : : : Cartesian coordinate system coordinate

z : : : Cartesian coordinate system coordinate

A+ : : : turbulence model constant

ADPAC : : : Advanced Ducted Propfan Analysis Code Version v1.0

ADSPIN : : : ADPAC post processing program

APPL : : : NASA Application Portable Parallel Library

ASCII : : : American Standard Code for Information Interchange

viii NASA CR{206600

CFL : : : Courant-Freidrichs-Lewy number (�t=�tmax;stable)

D : : : diameter

F : : : i coordinate direction ux vector

FAST : : : NASA Flow Analysis Software Toolkit

G : : : j coordinate direction ux vector

GRIDGEN : : : Multiple block general purpose mesh generation system

H : : : k coordinate direction ux vector

Htotal : : : total enthalpy

K : : : cylindrical coordinate system source vector

L : : : reference length

M : : : Mach number

MAKEADGRID : : : ADPAC multiple-block mesh assembly program

N : : : Number of blades

Q : : : vector of conserved variables

P : : : turbulence kinetic energy production term

PATCHFINDER : : : Multiple block mesh boundary data �le construction routine

PLOT3D : : : NASA graphics ow visualization program

Pr : : : gas Prandtl Number

R : : : gas constant or residual or maximum radius

R : : : turbulent Reynolds number

Re : : : Reynolds Number

S : : : surface area normal vector

SDBLIB : : : Scienti�c DataBase Library (binary �le I/O routines)

T : : : Temperature

U : : : Freestream velocity (units of length/time)

V : : : volume

Greek Symbols

 : : : speci�c heat ratio

� : : : calculation increment

� : : : turbulence dissipation parameter

r : : : gradient vector operator

! : : : vorticity

� : : : density

� : : : coe�cient of viscosity

� : : : �ctitious time or shear stress

�i;j : : : uid stress tensor

Subscripts

[]1 : : : inlet value

[]2 : : : exit value

[]ax : : : pertaining to the axial (x) cylindrical coordinate

NASA CR{206600 ix

[]coarse : : : coarse mesh value

[]effective : : : e�ective value

[]fine : : : �ne mesh value

[]freestream : : : freestream value

[]i;j;k : : : grid point index of variable

[]laminar : : : laminar ow value

[]max : : : maximum value

[]min : : : minimum value

[]nearwall : : : near wall value

[]non�dimensional : : : non-dimensional value

[]r : : : pertaining to the radial (r) cylindrical coordinate

[]ref : : : reference value

[]stable : : : value implied by linear stability

[]t : : : turbulent ow value

[]total : : : total (stagnation) value

[]turbulent : : : turbulent ow value

[]wall : : : value at the wall

[]x : : : pertaining to the x Cartesian coordinate

[]y : : : pertaining to the y Cartesian coordinate

[]z : : : pertaining to the z Cartesian coordinate

[]� : : : pertaining to the circumferential (�) cylindrical coordinate

Superscripts

[]+ : : : Turbulent velocity pro�le coordinate

[]� : : : Intermediate value
[]n : : : Time step index

[] : : : (no overscore) nondimensional variable

[̂] : : : Dimensional variable
�[] : : : Time-averaged variable
~[] : : : Density-weighted time-averaged variable
~[] : : : Vector variable
~~[] : : : Tensor variable

x NASA CR{206600

Chapter 1

SUMMARY

The current version of the computer codes described within this User's Manual is referred
to as ADPAC v1.0 (Advanced Ducted Propfan Analysis Codes - Version 1.0). The
ADPAC program solves a discretized form of the Navier-Stokes equations based on a
exible multiple-block grid discretization scheme permitting coupled 2-D/3-D mesh block
solutions with application to a wide variety of geometries. Aerodynamic calculations are
based on a four-stage Runge-Kutta time-marching �nite volume solution technique with
added numerical dissipation. Steady ow predictions are accelerated by a multi-grid
procedure. The code is capable of executing in either a serial or parallel computing mode
from a single source code.

NASA CR{206600 1

This Page Intentionally Left Blank

2 NASA CR{206600

Chapter 2

INTRODUCTION

This document contains the Computer Program User's Manual for the ADPAC v1.0

(Advanced Ducted Propfan Analysis Codes - Version 1.0) Euler/Navier-Stokes analysis
code developed by the Allison Engine Company under NASA sponsorship. The objective
was to develop a three-dimensional time-marching Euler/Navier-Stokes analysis tool for
aerodynamic and/or heat transfer analysis of modern turbomachinery con�gurations.
ADPAC is capable of predicting both steady state and time-dependent ow�elds using
coupled 2-D and 3-D solution zooming concepts (described in detail in Section 2.3). The
code was developed to be capable of either serial execution or parallel execution on
massively parallel or workstation cluster computing platforms from a single source.
Throughout the rest of this document, this aerodynamic analysis code is referred to as
ADPAC .

A theoretical development of the analyses in the ADPAC program is outlined in
Appendix A for reference. Additional information is presented in the Final Reports from
the work of Tasks V [1], VII [2], and VIII [3] of NASA Contract NAS3-25270. In brief, the
program utilizes a �nite-volume, time-marching numerical procedure in conjunction with a
exible, coupled 2-D/3-D multiple grid block geometric representation to permit detailed
aerodynamic simulations about complex con�gurations. The analysis has been tested and
results veri�ed for both turbomachinery and non-turbomachinery based applications. The
ability to accurately predict the aerodynamics due to the interactions between adjacent
components of modern, high-speed turbomachinery was of particular interest during this
program, and therefore, emphasis is given to these types of calculations throughout the
remainder of this document. It should be emphasized at this point that although the
ADPAC program was developed to analyze the steady and unsteady aerodynamics of
high-bypass ducted fans employing multiple blade rows, the code possesses many features
which make it practical to compute a number of other complicated ow con�gurations as
well.

2.1 Multiple-Block Solution Domain Concepts

In order to appreciate and utilize the features of the ADPAC solution system, the concept
of a multiple-block grid system must be fully understood. It is expected that the reader

NASA CR{206600 3

#1

#4

#5

#3

#2

#1

#9

#10

#8

#7

#6

#14

#15

#13

#12

#11

#19

#20

#18

#17

#16

Physical Domain Computational Domai n
S

in
gl

e
B

lo
ck

M
ul

tip
le

 B
lo

ck

Figure 2.1: ADPAC 2-D single-block and multiple-block mesh structure illustration.

possesses at least some understanding of the concepts of computational uid dynamics
(CFD), so the use of a numerical grid to discretize a ow domain should not be foreign.
Many CFD analyses rely on a single structured ordering of grid points upon which the
numerical solution is performed. Multiple-block grid systems are di�erent only in that
several structured grid systems are used in harmony to generate the numerical solution.
This concept is illustrated graphically in two dimensions for the ow through a nozzle in
Figure 2.1.

The grid system in the top of Figure 2.1 employs a single structured ordering,
resulting in a single computational space with which to contend. In theory, the nozzle
owpath could be subdivided into any number of domains employing structured grid
blocks resulting in an identical number of computational domains to contend with, as
shown in the 20 block decomposition illustrated in the bottom of Figure 2.1. The
complicating factor in this domain decomposition approach is that the numerical solution
must provide a means for the isolated computational domains to communicate with each
other in order to satisfy the conservation laws governing the desired aerodynamic solution.
Hence, as the number of subdomains used to complete the aerodynamic solution grows,
the number of inter-domain communication paths increases in a corresponding manner.
(It should be noted that this domain decomposition/communication overhead relationship
is also a key concept in parallel processing for large scale computations, and thus, the
ADPAC code possesses a natural domain decomposition division for parallel processing
a�orded by the multiple-block grid data structure.)

For the simple nozzle case illustrated in Figure 2.1 it would seem that there is no
real advantage in using a multiple-block grid, and this is probably true. For more

4 NASA CR{206600

complicated geometries, such as the turbine vane coupled O-H grid system shown in the
top of Figure 2.2 and the corresponding computational domain communication scheme
shown in the bottom Figure 2.2, it may not be possible to generate a single structured
grid to encompass the domain of interest without sacri�cing grid quality, and therefore, a
multiple-block grid system has signi�cant advantages.

The ADPAC code utilizes the multiple-block grid concept to the full extent by
permitting an arbitrary number of structured grid blocks with user speci�able
communication paths between blocks. The inter-block communication paths are
implemented as a series of boundary conditions on each block which, in some cases,
communicate ow information from one block to another. The advantages of the
multiple-block solution concept are exploited throughout the remainder of this document
as a means of treating complicated geometries, multiple blade row turbomachines of
varying blade number, endwall treatments, and to exploit computational enhancements
such as multi-grid.

2.2 Multiple Blade Row Solution Concepts

Armed with an understanding of the multiple-block mesh solution concept discussed in the
previous section, it is now possible to describe how this numerical solution technique can
be applied to predict complicated ows. Speci�cally, this section deals with the prediction
of ows through rotating machinery with multiple blade rows. Historically, the prediction
of three-dimensional ows through multistage turbomachinery has been based on one of
three solution schemes. These schemes are briey illustrated and described in Figure 2.3.

The �rst scheme involves predicting the time-resolved unsteady aerodynamics
resulting from the interactions occurring between relatively rotating blade rows. Examples
of this type of calculation are given by Rao and Delaney [4], Jorgensen and Chima [5], and
Rai [6]. This approach requires either the simulation of multiple blade passages per blade
row, or the incorporation of a phase-lagged boundary condition to account for the
di�erences in spatial periodicity for blade rows with dissimilar blade counts. Calculations
of this type are typically computationally expensive, and are presently impractical for
machines with more than 2-3 blade rows.

The second solution technique is based on the average-passage equation system
developed by Adamczyk [7]. In this approach, separate 3-D solution domains are de�ned
for each blade row which encompasses the overall domain for the entire turbomachine. The
individual solution domains are speci�c to a particular blade row, although all blade row
domains share a common axisymmetric ow. In the solution for the ow through a speci�c
blade passage, adjacent blade rows are represented by their time and space-averaged
blockage, body force, and energy source contributions to the overall ow. A correlation
model is used to represent the time and space-averaged ow uctuations representing the
interactions between blade rows. The advantage of the average-passage approach is that
the temporally and spatially-averaged equation system reduces the problem to a steady
ow case, and, within the accuracy of the correlation model, the solution is representative
of the average aerodynamic condition experienced by a given blade row under the
inuence of all other blade rows in the machine. The disadvantage of the average-passage
approach is that the solution complexity and cost grow rapidly as the number of blade

NASA CR{206600 5

0000000

0000000
0000000

0000000
0000000

0000000

=======

=======
=======

=======
=======

=======
=======

8
8
8
8
8
8
8
8
8
8
8
8

88
88
88
88
88
88
88
88

**
**
**
**
**
**
**
**

**
**
**
**
**
**
**
**

@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@
@@@@@@@@@@@@@

55
55
55
55
55
55
55
55
55
55
55
55

&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&
&&

)))))))))))))))
)))))))))))))))
)))))))))))))))
)))))))))))))))
)))))))))))))))
)))))))))))))))
)))))))))))))))
)))))))))))))))
)))))))))))))))

)))))))))))))))
)))))))))))))))
)))))))))))))))
)))))))))))))))
)))))))))))))))
)))))))))))))))
)))))))))))))))
)))))))))))))))
)))))))))))))))

5
5
5
5
5
5
5
5

@@@@@@@@@@@@@

&&&&
&&&&

))))
))))

))))
))))

5555
5555

&
&
&
&
&
&
&

""
""
""
""
""
""
""

"
"
"
"
"
"
"
"
"
"
"
"

i

k

i

k

i k
#1 #2

#3

#1 #2 #3

In
le

t

E
xi

t

Blade Surface

i

k

i

k

i

k

Physical Domain

Block Topology

Computational Domain

Interblock
Communication

Figure 2.2: Coupled H-O-H grid system and computational domain communication scheme for
compressor fan grid system. For clarity, only a single j=constant mesh slice extracted from a
3-D mesh system is shown.

6 NASA CR{206600

A
ve

ra
ge

−P
as

sa
ge

S
im

ul
at

io
n

C
irc

um
fe

re
nt

ia
l

M
ix

in
g

P
la

ne
3−

D
 R

ot
or

/S
ta

to
r

In
te

ra
ct

io
n

•
A

ve
ra

ge
−

pa
ss

ag
e

eq
ua

tio
n

sy
st

em

•
3−

D
 s

te
ad

y
so

lu
tio

n
of

 e
nt

ire
 d

om
ai

n
fo

r
ea

ch
 b

la
de

 r
ow

•
A

dj
ac

en
t b

la
de

 r
ow

s
re

pr
es

en
te

d
by

bl

oc
ka

ge
/b

od
y

fo
rc

es
 in

 3
−

D
 s

ol
ut

io
n

•
S

ol
ut

io
ns

 h
av

e
co

m
m

on
 a

xi
sy

m
m

et
ric

flo

w
fie

ld

•
C

or
re

la
tio

n
m

od
el

 fo
r

m
ix

in
g

te
rm

s

•
C

om
pu

ta
tio

na
l c

os
t s

til
l r

at
he

r
hi

gh

•
3−

D
 ti

m
e−

de
pe

nd
en

t N
av

ie
r−

S
to

ke
s

eq
ua

tio
ns

•
M

ul
tip

le
 b

la
de

 p
as

sa
ge

s
fo

r
ea

ch
bl

ad
e

ro
w

 o
r

ph
as

e−
la

gg
ed

bo

un
da

rie
s

•
T

im
e−

de
pe

nd
en

t c
ou

pl
in

g
of

in

di
vi

du
al

 b
la

de
 p

as
sa

ge
 d

om
ai

ns

•
C

om
pu

ta
tio

na
lly

 e
xp

en
si

ve
 −

 M
ul

tip
le

bl

ad
e

pa
ss

ag
es

 p
er

 b
la

de
 r

ow

•
S

te
ad

y
N

av
ie

r
S

to
ke

s
so

lu
tio

n

•
C

om
pu

ta
tio

na
l d

om
ai

n
lim

ite
d

to

ne
ar

 b
la

de
 r

eg
io

n

•
C

irc
um

fe
re

nt
ia

l m
ix

in
g

pl
an

e
pr

ov
id

es
 in

te
r−

bl
ad

e
ro

w

co
m

m
un

ic
at

io
n

•
Lo

w
er

 c
om

pu
ta

tio
na

l c
os

t

R
ot

or
S

ta
to

r

/
/
/
/

/
/
/
/

/
/
/
/

/
/
/
/

/
/
/
/

/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

R
ot

or

S
ta

to
r

A
xi

sy
m

m
et

ric
R

ep
re

se
nt

at
io

n

R
ot

or
S

ta
to

r

M
ix

in
g

 P
la

n
e

F
ig
u
re
2
.3
:
S
ev
er
al
ap
pr
oa
ch
es
ca
n
b
e
u
se
d
to
ob
ta
in
m
u
lt
ip
le
b
la
d
e
ro
w
n
u
m
er
ic
al
so
lu
ti
on
s.

NASA CR{206600 7

rows increases, and the accuracy of the correlation model is as yet unveri�ed.

The third approach for the prediction of ow through multistage turbomachinery is
based on the mixing plane concept. A mixing plane is an arbitrarily imposed boundary
inserted between adjacent blade rows across which the ow is \mixed out"
circumferentially. This circumferential mixing approximates the time-averaged condition
at the mixing plane and allows the aerodynamic solution for each blade passage to be
performed in a steady ow environment. The mixing plane concept was applied to
realistic turbofan engine con�gurations by Dawes [8, 9] and extensive validation is
available in recent work [10, 11]. Flow variables on either side of the mixing plane are
circumferentially averaged and passed to the neighboring blade row as a means of
smearing out the circumferential non-uniformities resulting from dissimilar blade counts.
The mixing plane concept is a much more computationally cost-e�ective approach because
the ow is steady, and the individual blade passage domains are limited to a near-blade
region. Unfortunately, the accuracy of this approach is clearly questionable under some
circumstances because of the placement of the mixing plane and the loss of spatial
information resulting from the circumferential averaging operator.

The ADPAC program possesses features which permit multiple blade row solutions
using either the time-dependent interaction approach or the mixing plane concept, as
described above. Average-passage simulations for realistic turbofan engine con�gurations
were reported under previous work [12]. Because there is no phase-lagged boundary
conditions, ADPAC predictions utilizing the time-accurate rotor/stator interaction
technique require that a su�cient number of blade passages be represented in each row
such that the circumferential distance represented in each blade row is constant. This
limits the blade counts which can be e�ectively simulated through this technique. For
example, for the simple single-stage calculation suggested in Figure 2.3, if the rotor has 36
blades and the stator has 48 blades, a time dependent solution would require, as a
minimum, 3 rotor blade passages and 4 stator blade passages to accommodate the
common circumferential pitch requirement. If the rotor has 35 blades, and the stator has
47 blades, however, then both blade rows would require that every blade passage be
modeled as there are no common divisors of the blade counts. This restriction will appear
quite often, as turbomachinery designers often do not like to design neighboring blade
rows with blade counts which have a common integer factor. Ultimately, this type of
problem will require the incorporation of a phase-lagged boundary condition which would
permit time-dependent interaction solutions for neighboring blades using only one blade
passage per blade row.

If, instead, a mixing plane type of calculation is desired, then the multiple block
scheme may again be invoked by utilizing a single blade passage per blade row, where each
grid block has a common mating surface with a neighboring blade row. The only special
requirement here is that boundary condition routines be available to adequately perform
the circumferential averaging between blade rows and supply the block-to-block
communication of this information in the multiple-block mesh solution algorithm. Section
3.7 describes the techniques for applying this type of boundary condition.

8 NASA CR{206600

2−D Axisymmetric Representation3−D Geometry
3−D Computational
Domain

2−D Axisymmetric Representation
of Stator Blade Row − Includes the
Effects of Blockage, Body Forces and
Energy Sources

Stator

Rotor Stator
Rotor

Figure 2.4: 2-D axisymmetric ow representation of a turbomachinery blade row.

2.3 2-D/3-D Solution Zooming Concepts

A fourth unique feature of the ADPAC solution system involves the concept of coupling
two-dimensional and three-dimensional solution domains to obtain representative
simulations of realistic high bypass ducted fan engine concepts. A complicating factor in
the analysis of ows through turbofan engine systems results from the interactions
between adjacent blade rows, and, in the case of a ducted fan, the e�ects of downstream
blade rows on the aerodynamics of the upstream fan rotor. Historically, in the design of
multistage turbomachinery, an axisymmetric representation of the ow through a given
blade row has been used to e�ectively reduce the complexity of the overall problems to a
manageable level. Similarly, an e�cient approach to the numerical simulation of
downstream blade rows could naturally utilize an axisymmetric representation of the
e�ects of these rows through a two-dimensional grid system, with blade blockage, body
force, and energy terms representing the axisymmetric averaged aerodynamic inuence
imparted by the embedded blade row. This concept is illustrated graphically in Figure 2.4
for a representative turbine stage.

A numerical solution of the ow through the fan rotor is complicated by the
presence of the core stator, bypass stator, and bypass splitter as shown in Figure 2.5. It is
undesirable to restrict the solution domain to the fan rotor alone as this approach neglects
the potential interactions between the fan rotor and the downstream geometry. The
ADPAC program permits coupled solutions of 3-D and 2-D mesh blocks with embedded
blade row blockage, body force, and energy terms as a means of e�ciently treating these
more complicated con�gurations. Blade force terms may be determined from a separate
3-D solution, or may be directly speci�ed based on simpler design system analyses.
Neighboring 2-D and 3-D mesh blocks are numerically coupled through a circumferential
averaging procedure which attempts to globally satisfy the conservation of mass,
momentum and energy across the solution domain interface. The \dimensional zooming"
capability permitted by the 2-D/3-D mesh coupling scheme is considered a vital asset for
the accurate prediction of the ow through modern high-speed turbofan engine systems.

NASA CR{206600 9

Fan
Rotor

Core
Stator

Bypass
Stator

Splitter

Figure 2.5: Typical fan rotor owpath geometry including bypass splitter.

2.4 Multi-grid Convergence Acceleration Concepts

For completeness, a brief section is included here to discuss the multi-grid convergence
acceleration solution technique incorporated into the ADPAC code. Multi-grid (please do
not confuse this with a multiple-block grid!) is a numerical solution technique which
attempts to accelerate the convergence of an iterative process (such as a steady ow
prediction using a time-marching scheme) by computing corrections to the solution on
coarser meshes and propagating these changes to the �ne mesh through interpolation.
This operation may be recursively applied to several coarsenings of the original mesh to
e�ectively enhance the overall convergence. Coarse meshes are derived from the preceding
�ner mesh by eliminating every other mesh line in each coordinate direction as shown in
Figure 2.6. As a result, the number of multi-grid levels (coarse mesh divisions) is
controlled by the mesh size, and, in the case of the ADPAC code, by the mesh indices of
the boundary patches used to de�ne the boundary conditions on a given mesh block (see
Figure 2.6). These restrictions suggest that mesh blocks should be constructed such that
the internal boundaries and overall size coincide with numbers which are compatible with
the multi-grid solution procedure. The mesh size should be 1 greater than any number
which can be divided by 2 several times and remain whole numbers (e.g. 9, 17, 33, 65).
This is illustrated in the following equation:

n� 1

2mg�1 = integer (2.1)

where n is the index of the feature (block edge or boundary condition limit) and mg is the
desired number of multi-grid levels. It is generally recommended to employ 2 or 3 levels of
multi-grid if possible. It should also be noted that specifying 1 level of multi-grid is
equivalent to solving the ow solution using the �ne mesh level only and essentially using
no levels of multi-grid. Further details on the application of the ADPAC multi-grid scheme
are given in Section 3.6 and in Reference [1].

10 NASA CR{206600

Fine Mesh
(Level 1)

Coarser Mesh
(Level 2)

Coarsest Mesh
(Level 3)

Every other mesh line removed to define next mesh level

Figure 2.6: Multi-grid mesh coarsening strategy and mesh index relation.

A second multi-grid concept which should be discussed is the so-called \full"
multi-grid startup procedure. The \full" multi-grid method is used to start up a solution
by initiating the calculation on a coarse mesh, performing several time-marching iterations
on that mesh (which, by the way could be multi-grid iterations if successively coarser
meshes are available), and then interpolating the solution at that point to the next �ner
mesh, and repeating the entire process until the �nest mesh level is reached. The intent
here is to generate a reasonably approximate solution on the coarser meshes before
undergoing the expense of the �ne mesh multi-grid cycles using a \grid sequencing"
technique. Again, the \full" multi-grid technique only applies to starting up a solution,
and therefore, it is not normally advisable to utilize this scheme when the solution is
restarted from a previous solution as the information provided by the restart data will
likely be lost in the coarse mesh re-initialization.

2.5 General Solution Procedure Sequence

The ADPAC code is distributed as a compressed tar �le which must be processed before
the code may be utilized. The instructions accompanying the code distribution describe
how to extract the necessary data to run the code. For some systems, a UNIX-based
compile script is provided to automate the set-up and compile procedure. This operation
is typically required only once when the initial distribution is received. Once the source
�les have been extracted, the sequence of tasks illustrated in Figure 2.7 and described
below are typical of the events required to perform a successful analysis using the
ADPAC code. Separate sections are provided in the chapters which follow to describe in
detail the basis and operation of the codes used in the steps below.

NASA CR{206600 11

BACPAC

8. Consolidate Domain
(Parallel Only)

2 3

1

4

1

SIXPAC

Ncase.mesh
Ncase.input
Ncase.boundata

6. Subdivide Domain
(Parallel Only)

1 2 3

1

4

2. Define Geometry
1. Define Problem

?Inviscid vs. Viscous
Steady−State vs. Time−Accurate

Flow Conditions
Results Needed

case.mesh

3. Generate Grid

ADSPIN
PLOT3D

FAST

9. Visualization / Post−Process

m, Rc, η

ADPAC

7. Run Flow Solution

SGI
HP
IBM
SUN
PC (Linux)
Cray
nCUBE

Serial vs. Parallel

--

ADPAC Input File

--

FAN BLADE

--

VARNAME = VARIABLE VALUE COMMENT

--

CASENAME = fan1 The case name is "fan"

FMULTI = 3.0 Three mesh levels for multi-grid

FSUBIT = 1.0 1 subiteration on each coarse mesh level

FFULMG = 1.0 Use "full" multi-grid

FCOAG1 = 3.0 Start "full" multi-grid on 3rd mesh level

FCOAG2 = 2.0 End "full" multi-grid on 2nd mesh level

FITFMG = 150.0 150 "full" multi-grid iterations per level

RMACH = 0.750000 Reference Mach Number for initialization

FINVVI = 0.000000 0.0-Inviscid Flow, 1.0-viscous flow

GAMMA = 1.400000 Specific heat ratio

PREF = 2116.220000 Reference Total Pressure (lbf/ft**2)

TREF = 518.670000 Reference Total Temperature (Deg. R)

RGAS = 1716.260010 Gas constant (ft-lbf/slug-deg R)

DIAM = 9.000000 Reference diameter (ft.)

EPSX = 1.000000 Residual smoothing coefficient in i direction

EPSY = 1.000000 Residual smoothing coefficient in j direction

EPSZ = 1.000000 Residual smoothing coefficient in k direction

VIS2 = 0.500000 Fine mesh 2nd order dissipation coefficient

VIS4 = 0.015625 Fine mesh 4th order dissipation coefficient

VISCG2 = 0.125000 Coarse mesh dissipation coefficient

CFL = -5.000000 <0.0, Steady flow, >0.0, unsteady flow

FNCMAX = 150.000000 150 iterations on fine mesh level

PRNO = 0.700000 Gas Prandtl number = 0.7

PRTNO = 0.900000 Turbulent Prandtl number = 0.9

FREST = 0.000000 No restart file is read in

RPM(1) = -1000.000000 Rotational speed for block #1 is -1000.00

RPM(2) = -1000.000000 Rotational speed for block #2 is -1000.00

RPM(3) = -1000.00 Rotational speed for block #3 is -1000.00

RPM(4) = -1000.00 Rotational speed for block #4 is -1000.00

ENDINPUT

case.input

4. Create Input File

B L L L L L L L L L L M M N N M M N N C

C B B F F D D S S 1 2 1 1 1 1 2 2 2 2 O

T L L A A I I P P L L L L L L L L L L M

Y O O C C R R E E I I I I I I I I I I M

P C C E E 1 2 C C M M M M M M M M M M E

E K K 1 2 1 2 1 2 1 2 1 2 1 2 N

1 2 T

#------ -- -- -- -- -- -- -- -- --- --- --- --- --- --- --- --- --- --- ---------

#

#---> The next two lines do the periodic boundary at K=1, K=17

#

PATCH 1 1 K K P M I J 1 17 1 49 1 17 1 49 1 17 K=1

PATCH 1 1 K K M P I J 17 1 1 49 1 17 1 49 1 17 K=KL

#

#---> Hub surface is at J=1

#

SSIN 1 1 J J P P S S 1 1 1 49 1 17 1 49 1 17 Hub

#

#---> Next two lines define the blade surfaces at K=1, K=17

#

SSIN 1 1 K K P P S S 1 1 17 33 1 17 17 33 1 17 K=1

SSIN 1 1 K K M M S S 17 17 17 33 1 17 17 33 1 17 K=KL

#

#---> Set the inflow data at I=1

#

INLETT 1 1 I I P P S S 1 1 1 17 1 17 1 17 1 17 INL

NDATA

3

RAD PTOT TTOT BETAR BETAT

0.100000 1.000000 1.000000 0.000000 0.000000

0.300000 1.000000 1.000000 0.000000 0.000000

0.500000 1.000000 1.000000 0.000000 0.000000

#

#---> Set the exit flow data at I=49 (Note that the exit static pressure

is set here: this determines the blade loading and the flow rate)

#

EXITT 1 1 I I M M H H 49 49 1 17 1 17 1 17 1 17 INL

PEXIT

1.200000

#

#---> Define the case surface at J=17

#

SSIN 1 1 J J M M S S 17 17 1 49 1 17 1 49 1 17 Case

#

ENDDATA

PATCHFINDER

case.boundata

5. Create Boundary
Condition File

Figure 2.7: Typical sequence of tasks employed during an ADPAC analysis.

12 NASA CR{206600

Step 1. De�ne the problem

This step normally involves selecting the geometry and ow conditions, and de�ning
which speci�c results are desired from the analysis. The de�nition of the problem must
involve specifying whether steady state or time-dependent data are required, whether an
inviscid calculation is su�cient, or whether a viscous ow solution is required, and some
idea of the relative merits of solution accuracy versus solution cost (CPU time) must be
considered.

Step 2. De�ne the geometry and ow domain

Typically, geometric features such as airfoils, ducts, and owpath endwalls are
required to geometrically de�ne a given problem. The solution domain may be chosen to
include the external ow, internal engine passage ows, and/or leakage ows. The ow
domain is normally de�ned large enough such that the region of interest is far enough
away from the external boundaries of the problem to ensure that the solution is not
unduly inuenced by the external boundary conditions.

Step 3. De�ne a block structure and generate a numerical grid

Once the geometry and solution domain have been numerically de�ned, the
implementation of the solution mesh structure must be considered. This process begins
with a determination of the domain block structure, if and when more than one mesh
block is required for a given solution. The possibility of incorporating 2-D mesh blocks
should be considered whenever possible due to the computational savings a�orded by this
approach.

Most of the standard grid block structures de�ned in this document can be
adequately handled through commercial packages such as the GRIDGEN [13] grid
generation program. Other user-created grid generation programs may be equally useful,
and a conversion program called MAKEADGRID is included to convert non-standard
format meshes into ADPAC format.

Step 4. Generate a standard input �le

The standard input �le controls operations speci�c to a particular run of the
ADPAC code. Options such as the number of iterations, damping parameters, and
input/output control of the code execution may all be governed by the values speci�ed in
the standard input �le.

Step 5. Generate a boundary data �le

The boundary data �le controls the application of boundary conditions on the grid
block structure provided to the ow code. The boundary data speci�cations are speci�c to
the mesh being used in a given calculation. For other block con�gurations, the user must
construct the boundary data �le by hand according to the format described in Section 3.7.
A program is provided (PATCHFINDER) in the ADPAC standard distribution to aid the
user in locating contiguous block interface connections for multiple block meshes.

Step 6. Subdivide the problem for parallel execution

NASA CR{206600 13

For execution across multiple processors, it may be necessary to subdivide the
original block structure to permit the use of additional processors, or to aid in load
balancing. The SIXPAC program is provided for this purpose.

For parallel calculations using APPL, it is necessary to construct the procdef �le
which de�nes the computing environment (machine name, number of processes, etc.). The
relationship between the number of processors and the number of mesh blocks should not
be ignored, as it is up to the user to construct the case.blkproc �le to adequately balance
the overall problem in a multiprocessor computing environment.

Step 7. Run ADPAC to predict the aerodynamic parameters

Chapter 3 describes the commands necessary to perform this step. Depending on
the number of mesh points generated ADPAC may require the maximum array dimensions
to be adjusted and the code recompiled as described in Section 3.3. In many cases, a given
calculation will involve several applications of the ADPAC code, restarted from the
previous calculation as a means of breaking up a large problem into several shorter
calculations.

Step 8. Consolidate the block structure

For solutions which have utilized the block subdivision process (see Step 7 above) it
may be useful to consolidate the subdivided problem back into the original block
structure. The BACPAC program is provided for this purpose.

Step 9. Plot and post-process the results

An interactive post processing program called ADSPIN is provided to handle tasks
such as mass-averaging ow variables to simplify the interpretation of the computed
results (see Chapter 6). Output data is also provided for widely available plotting
programs such as PLOT3D [14] and FAST [15].

It is worthwhile mentioning that the development and application of the codes
described in this manual were performed on Unix-based computers. All �les are stored in
machine-independent format. Small �les utilize standard ASCII format, while larger �les,
which bene�t from some type of binary storage format, use the Scienti�c DataBase
Library (SDBLIB) format [16, 17]. The SDBLIB machine-dependent input/output
routines provide machine independence of the binary data �les. The SDBLIB routines
were developed at the NASA Lewis Research Center.

Most of the plotting and graphical post-processing of the solutions is performed on
graphics workstations. The PLOT3D [14], and FAST [15] graphics software packages
developed at NASA Ames Research Center are extensively used for this purpose, and data
�les for these plotting packages are generated automatically. These data �les are written
in what is known as PLOT3D multiple-grid format. (See ADPAC File Description,
Section 3.5).

14 NASA CR{206600

2.6 Consolidated Serial/Parallel Code Capability

One of the practical di�culties of performing CFD analyses is �nding su�cient
computational resources to allow for adequate modeling of complex geometries.
Oftentimes, workstations are not large enough, and supercomputers have either long
queues, high costs, or both. Clearly, a means of circumventing these di�culties without
giving up the exibility of the CFD code or the complexity of the model would be
welcome. One possibility is to write a code which could run in parallel across a number of
processors, with each one having only a piece of the problem. Then, a number of lesser
machines could be harnessed together to make a virtual supercomputer.

The most likely candidates for creating such a machine are the workstations which
are otherwise utilized during the day, but sit idle at night. Tremendous power can be
made available at no extra cost. There are also massively parallel computers available on
the market designed speci�cally for such applications. These machines are aiming at order
of magnitude improvements over present supercomputers.

The objective behind the development of the consolidated ADPAC code described in
this manual was to create a platform independent parallel code. The intent was to design
a parallel code which looks and feels like a traditional code, capable of running on
networks of workstations, on massively parallel computers, or on the traditional
supercomputer. User e�ort was to be minimized by creating simple procedures to migrate
a serial problem into the parallel environment and back again.

2.7 Parallelization Strategy

The ADPAC code has some innate advantages for parallelization: it is an explicit,
multi-block solver with a very exible implementation of the boundary conditions. This
presents two viable options for parallelization: parallelize the internal solver (the
\�ne-grained" approach), or parallelize only the boundary conditions (the
\coarse-grained" approach). The �ne-grained approach has the advantage that block size
is not limited by processor size. This is the approach frequently taken when writing code
for parallel computers which are made up of many small processors. The coarse-grained
approach is favored when writing code for clusters of workstations, or other machines with
a few large processors. The dilemma is that a parallel ADPAC needs to run well on both
kinds of machines.

The �ne grained approach is especially enticing for explicit solvers. Explicit codes
have proven to be the easiest to parallelize because there is little data dependency
between points. For a single block explicit solver, �ne-grained parallelization is the clear
choice. However, with a multi-block solver, the boundary conditions must be parallelized
in addition to the interior point solver, and that can add a lot of programming e�ort. The
coarse-grained approach is admittedly easier for multi-block solvers, but what if the blocks
are too big for the processors? The simplest answer is to require the user to block out the
problem so that it �ts on the chosen machine. This satis�es the programmer, but the user
is faced with a tedious chore. If the user decides to run on a di�erent machine, then the job
may have to be redone. The pain saved by the programmer is passed directly to the user.

NASA CR{206600 15

A compromise position was reached for the ADPAC code. The coarse-grained
approach is used, but supplemental tools are provided to automatically generate new grid
blocks and boundary conditions for a user-speci�ed topography. In this way, the parallel
portions of the code are isolated to a few routines within ADPAC , and the user is not
unduly burdened with architecture considerations. While the vast majority of the
ADPAC boundary conditions can be employed in both serial and parallel modes of
operation, the user should be cautioned that a few of the boundary conditions will not
perform correctly in parallel. This restriction is noted within the sections described the
boundary conditions. Details of running ADPAC in parallel are given in Chapter 4.

16 NASA CR{206600

Chapter 3

ADPAC : 3-D EULER/
NAVIER-STOKES FLOW SOLVER
OPERATING INSTRUCTIONS

3.1 Introduction to ADPAC

This chapter contains the operating instructions for the ADPAC time-dependent multiple
block grid 3-D Euler/Navier-Stokes aerodynamic analysis. These instructions include
some general information covering executing the code, de�ning array limits, compiling the
ow solver, setting up input �les, running the code, and examining output data. The
ADPAC ow solver routines are primarily written in FORTRAN and have been compiled
under both F77 and F90 for both serial and parallel mode. ADPAC has been run
successfully on several computing platforms including SGI, Cray, IBM, Sun, HP, DEC,
and Pentium-based PC's running under the Linux operating system.

3.2 General Information Concerning the Operation of the ADPAC Code

Approximate computational storage and CPU requirements for the ADPAC code can be
conservatively estimated from the following formulas:

CPU (sec) � 1:1 � 10�4(# grid points)(# iterations)

Memory (Mb) � 2:6 � 10�4(# grid points)

These formulas are valid for a 64-bit executable running on a SGI Power Challenge
computer (300 MFLOPS/cpu) operating under the IRIX 6.2 environment and the f90
compiler (version 7.0) using the compiler optimization string speci�ed in the standard
ADPAC Make�le. The times reported are for a single processor only. The formulas are
based on the standard, explicit solution algorithm using the algebraic turbulence model.
Use of the implicit ow solver or higher-order turbulence model could e�ectively increase
both numbers by a factor of 1.4 or more. Use of parallel processing can substantially
reduce these estimates on a per CPU basis.

NASA CR{206600 17

Without multi-grid, a 250,000 grid-point steady inviscid ow calculation normally
requires approximately 2000 iterations to reduce the maximum residual by three orders of
magnitude (103) which is normally an acceptable level of convergence for most
calculations. Viscous ow calculations generally require 3000 or more iterations to
converge. When multi-grid is used, the number of iterations required to obtain a
converged solution is often one-third to one-fourth the number of iterations required
without multi-grid. Convergence for a viscous ow case is generally less well behaved than
a corresponding inviscid ow calculation, and in many cases, it is not possible to reduce
the maximum residual by three orders of magnitude due to oscillations resulting from
vortex shedding, shear layers, etc. A determination of convergence for a viscous ow case
must often be based on observing the mass ow rate, pressure ratio, or other global
parameter, and terminating the calculation when these variables no longer change. The
number of iterations required for an unsteady ow calculation is highly case-dependent,
and may be based on mesh spacing, overall time-period, complexity of the ow, etc.

The ADPAC program produces output �les suitable for plotting using the
PLOT3D [14] and FAST [15] graphics software packages developed at the NASA Ames
Research Center. PLOT3D multiple-block format data �les are written for both absolute
and relative ows (see Section 3.11 for a description of the PLOT3D format). The user
may also elect to have additional PLOT3D absolute ow data �les output at constant
iteration intervals during the course of the solution. These �les may be used as
instantaneous ow \snapshots" of an unsteady ow prediction. PLOT3D formatted �les
containing turbulence parameters are also generated when using the Spalart-Allmaras
model or k�R model.

3.3 Con�guring ADPAC Maximum Array Dimensions

The �rst step required before attempting to compile and run the ADPAC program is to set
the maximum array size required for the analysis. The maximum array size will ultimately
determine the largest problem (in terms of total number of mesh points) which can be run
with the code. The larger the array limits, the larger the number of grid points which may
be used. Unfortunately, setting larger array limits also increases the total amount of
memory required by the program, and hence, can impede the execution of the code on
memory-limited computing systems. Ideally, the code should be dimensioned just large
enough to �t the problem at hand. It should be mentioned that storage requirements are
dependent on whether the multi-grid convergence acceleration technique is used or not.
This dependency is explained in more detail in the paragraphs which follow.

Array dimensions are speci�ed in the ADPAC program by a set of FORTRAN
parameter statements. The array limits are speci�ed in the source code �le parameter.inc
such as shown in Figure 3.1. Each statement in the parameter.inc �le is ultimately
embedded in every subroutine through a FORTRAN include statement. During
execution, the ADPAC program automatically checks to make sure enough storage is
available for all the blocks and issues a fatal error message if an array size is exceeded.

Before proceeding with a description of the various parameters, it should be
mentioned that a computational tool is available called ADSTAT which will read in an
ADPAC mesh �le and determine the required parameter sizes for all possible levels of

18 NASA CR{206600

parameter (nbmax = 101)

parameter (nra3d = 300001)

parameter (nra1d = 2001)

parameter (nbl2d = 50001)

parameter (nraint = 1)

parameter (nbcpbl = 25)

parameter (nbfra = 1)

parameter (lgrafx = 1)

c---> nsyst = dimension of sdum array for system call BC

parameter (nsyst = 1)

c---> nbffile = dimension of bffile array for body force files

parameter (nbffile = 16)

c---> nbcnt1 = dimension of bcint stencil saving array (set =1 to turn off)

parameter (nbcnt1 = 1)

c

c---> the following parameters control 3-D array storage

c

c nimpra sets multi time level implicit array storage (0 = none, 1 = do it)

c n2eqra sets 2 equation turbulence model array storage (0 = none, 1 = do it)

c

parameter (nimpra = 0)

parameter (n2eqra = 0)

Figure 3.1: Sample ADPAC parameter �le speci�cation (parameter.inc).

multi-grid use. ADSTAT will also determine the minimum array sizes needed for parallel
execution of ADPAC with mesh block split across multiple processors. The
ADSTAT program is described in more detail in Chapter 7.

The various parameters utilized in the parameter.inc �le are described below:

nbmax
The parameter nbmax de�nes the maximum number of grid blocks permitted during
execution of the ADPAC multiple block solver. This number must be large enough to
include every level of coarse mesh blocks created during a multi-grid run. The
ADPAC code exploits the multiple block mesh structure during multi-grid runs by creating
and storing coarse mesh blocks from the corresponding �ne mesh blocks. For example, to
run a 5 block mesh with 3 levels of multi-grid, the parameter nbmax must be at least 15.

nra3d
The parameter nra3d de�nes the maximum total number of computational cells permitted
for the �nite volume time-marching algorithm. This parameter essentially limits the
maximum total number of mesh points (including multi-grid coarse meshes, when
applicable) which are permitted during an ADPAC run. The minimum value for the nra3d
parameter for a given mesh system may be calculated as follows:

nra3d �

m=NBLKSX

m=1

[(IMX)m + 1][(JMX)m + 1][(KMX)m + 1]

!
+ 1

where (IMX)m, (JMX)m, and (KMX)m indicate the number of mesh points in the i, j,
and k mesh coordinate directions, respectively, for mesh block m, and NBLKS is the

NASA CR{206600 19

total number of grid blocks including all coarse meshes desired from �ne meshes when
multi-grid is employed. The requirement that the parameter variable nra3d (and others)
be based on array sizes one element larger than the grid dimensions results from the use of
phantom cells outside the computational domain to impose the numerical boundary
conditions.

nbl2d
The parameter nbl2d is used to de�ne the size of the temporary 2-D arrays utilized during
the advancement of the time-marching algorithm for a given mesh block. As such, the
parameter is based on the largest single dimension of any mesh block (2-D or 3-D) and
may be determined by the following formula:

nbl2d � (maxm=1;NBLKS[(IMX)m + 1; (JMX)m + 1; (KMX)m + 1])2 + 1

where the variables IMX; JMX;KMX;NBLKS are de�ned in the section describing
nra3d above. This value is unchanged regardless of the number of multi-grid levels since
coarser meshes always result in smaller mesh sizes.

nra1d
The parameter nra1d is used to de�ne the size of several 1-D arrays used to do various
bookkeeping operations during the execution of the ADPAC code. As such, the parameter
is based on the sum of the maximum single dimension of all mesh blocks in the following
manner:

nra1d �

m=NBLKSX

m=1

max[(IMX)m + 1; (JMX)m + 1; (KMX)m + 1]

!
+ 1

nbcpbl
The parameter nbcpbl is used to de�ne the size of the arrays used to store the boundary
condition speci�cations for a given ADPAC run. Since the number of boundary conditions
normally scales according to the number of mesh blocks (as a minimum, six boundary
conditions are required for each 3-D mesh block, see Section 3.7), the parameter nbcpbl
implies the maximum number of boundary conditions per block, and the overall number of
boundary conditions is determined by multiplying the parameters nbmax and nbcpbl. It
should be noted that a single block can, in fact, possess more than nbcpbl boundary
condition speci�cations as long as the total number of boundary condition speci�cations
for the entire problem does not exceed nbmax�nbcpbl.

nraint
The parameter nraint is used to de�ne the size of the temporary arrays used to store
interpolation data for the non-contiguous mesh patching boundary condition speci�cation
PINT, described in Section 3.7. The PINT speci�cation controls the numerical coupling
between two mesh blocks possessing non-contiguous mesh boundaries which lie on a
common surface. The numerical scheme utilizes a rather simple interpolation scheme
based on an electrical circuit analogy, and stores the \nearest neighbors" for each mesh
point to avoid the expense of constantly searching for the interpolation stencil between the
two mesh surfaces. Determining the value required for the parameter nraint is normally

20 NASA CR{206600

performed by summing up all of the mesh elements involved in all of the PINT
speci�cations (including coarse mesh speci�cations from a multi-grid run).

nbfra
The parameter nbfra is used to de�ne the size of the 2-D arrays used to store the blade
element blockage, body force, and energy source terms for the 2-D block solution scheme.
Since these arrays are utilized for any 2-D mesh block regardless of whether blade element
blockage and source terms are utilized, the arrays must be dimensioned large enough to
store all the elements of all of the 2-D mesh blocks (including coarse meshes for multi-grid
runs) much in the manner that nra3d is used to store all of the elements of all of the mesh
blocks. Mathematically, the minimum value for the parameter nbfra may be calculated as:

nbfra �

m=NBLKSX

m=1

[(IMX)m + 1][(JMX)m + 1]L2D(m)

!
+ 1

where the variables IMX; JMX;KMX and NBLKS are described in the de�nition of
parameter nra3d, above. The variable L2D(m) is a trigger to indicate whether the grid
block m is 2-D (1) or 3-D (0).

lgrafx
The parameter lgrafx is used to de�ne the size of the temporary 3-D arrays used for the
run-time graphics display option available in the ADPAC code. If the run-time graphics
option is employed, then the parameter lgrafx can be determined in the same manner as
the parameter nra3d. If the run-time graphics option is not employed, then the parameter
lgrafx should be set to 1, resulting in a considerable savings in computational storage.

nsyst
The parameter nsyst is used to de�ne the size of a character array which stores system
call commands during the execution of the boundary condition routine SYSTEM (see
Section 3.7). Normally, this is not used and may be set to a value of 1 to minimize
storage. If the SYSTEM boundary routine is used, then nsyst must be at least as large as
the number of SYSTEM boundary speci�cations in the ADPAC boundary data �le.

nb�le
The parameter nb�le is used to de�ne the size of a character array which stores body
force �le names speci�ed by the input variable BFFILE (see Section 3.6). Normally, this is
not used and may be set to a value of 1 to minimize storage. If the BFFILE input variable
is used, then nb�le must be at least as large as nbmax.

nbcnt1
The parameter nbcnt1 is used to de�ne the size of the arrays used to save the
interpolation stencils used in the BCINT1 and BCINTM non-aligned mesh boundary
coupling schemes. In an e�ort to increase computational and communication e�ciency,
the interpolation stencils used to update the non-aligned boundaries in these boundary
condition routines are only calculated on the �rst step, and are subsequently saved to
eliminate any redundant calculation. The nbcnt1 parameter must be at least as large as
the sum of the total number of points along all BCINT1 and BCINTM non-aligned
boundary patches. If BCNT1 is set to 1, then the interpolation stencil saving feature is
disabled, and the interpolation stencil is recalculated at every time step.

NASA CR{206600 21

nimpra
The parameter nimpra is used to de�ne the size of the arrays used in the ADPAC implicit
solution algorithm. For time-dependent solutions involving the iterative implicit solution
algorithm, up to two additional time levels of the conserved ow variables must be stored,
and this storage is de�ned based on the value of (nimpra�nra3d+1). The value of nimpra
should therefore be either 0 (no implicit time level storage) or 1 (provide implicit time
level storage). If an implicit solution is attempted when the code has been compiled with
nimpra=0, the code prints an error message and halts execution.

n2eqra
The parameter n2eqra is used to de�ne the size of the arrays used in the
ADPAC one-equation or two-equation turbulence model solution algorithm. Additional
storage is required for the dependent variables employed in the solution of the turbulence
transport equations, and this storage is de�ned based on the value of (n2eqra�nra3d+1).
The value of n2eqra should therefore be either 0 (no one-equation or two-equation
turbulence model storage) or 1 (provide one-equation or two-equation turbulence model
storage). If an one-equation or two-equation turbulence model solution is attempted when
the code has been compiled with n2eqra=0, the code prints an error message and halts
execution.

3.4 ADPAC Compilation Using Make�le

Compilation of the ADPAC source code into an executable form is handled through a
UNIX-based Make�le facility. A Make�le is included with the standard distribution which
permits automatic compilation of the code for several operational capabilities (both serial
and parallel) and computer systems. A sample UNIX shell script illustrating the basic
steps required for compiling and running the ADPAC code in serial and in parallel is given
in Appendix B. The format of the Make�le compiling command is described below.

Several items should be mentioned prior to detailed discussion on the actual
Make�le utilities. Section 3.8 describes the format of the binary �les using the Scienti�c
Database Library developed at NASA-Lewis [16, 17]. The original (FORTRAN) version of
the Scienti�c Database Library was found to be rather slow on some machines, and an
equivalent limited capability C-based library was developed to accelerate the I/O
processing in the code. This library is referred to as CSDB, and separate options for
utilizing the CSDB library are included in the Make�le. In addition, the consolidated code
is capable of both serial and parallel operation depending on the Make�le operation
selected.

In the directory containing the FORTRAN source of the ADPAC code, compilation
is performed by executing the command:

make option

The make command is standard on UNIX systems and automatically interrogates the �le
Make�le for instructions on how to perform the compilation. At the completion of the
compilation process on any system, an executable version of the code is written in the
source directory. The option argument may be any of the variables listed below:

22 NASA CR{206600

Standard UNIX (Silicon Graphics) Make Options

(No argument) This is the standard UNIX system compilation for the serial version
of the ADPAC code. All non-standard programming constructs are
avoided (such as graphics, or multi-processor features). This option
will deliver a working executable on most UNIX systems which
support standard naming conventions (f77 as the standard compiler,
etc.). The compilation includes basic compiler optimization (f77 -O).
Executable name: adpac.

csdb This is the same as above, except that the faster C-based scienti�c
database library is linked instead of the standard scienti�c database
library. Prior to performing this compilation, the appropriate make
command must be issued in the CSDB directory to assemble the
CSDB library for the local machine. Executable name: adpac.

graphics This option compiles ADPAC with the necessary routines needed to
permit interactive graphics between network connected Silicon
Graphics workstations. This option will only work when compiling on
a Silicon Graphics workstation with IRIX operating system 4.0.1 or
above. The full Silicon Graphics shared graphics libraries and
X-windows system graphics libraries must be installed on the
compiling workstation in order for this option to work. This feature
is not recommended as it generally decreases performance and other
visualization techniques are likely to produce more desirable results.
Executable name: adpac graphics.

csdb graphics This option is the same as graphics above, except that the faster
C-based scienti�c database library is linked instead of the standard
scienti�c database library. See compiling notes under graphics and
csdb. Executable name: adpac graphics.

dbx This option is used for generating an executable version of the serial
code which is compatible with the standard UNIX dbx -based
debugging facility. This should work on any standard UNIX machine
which supports dbx (Note: the code will run much more slowly when
compiled in this fashion.) This option is used mainly for code
development or debugging. Executable name: adpac dbx.

csdb dbx This option is the same as dbx above, except using the CSDB library.
See compiling notes under dbx and csdb. Executable name:
adpac dbx.

dbx graphics This option is used for generating an executable version of the serial
code with run-time graphics enabled which is compatible with the
standard UNIX dbx -based debugging facility using the CSDB library.
See compiling notes under graphics and dbx. Executable name:
adpac dbx graphics.

parallel This is the standard UNIX system compilation for the parallel
version of the ADPAC code. The standard APPL message passing

NASA CR{206600 23

library is incorporated, and therefore creation of this executable
requires that a make has been issued in the APPL directory on the
current machine. The parallel code may only be executed using the
APPL compute function with a corresponding APPL procdef �le.
Prior to performing this compilation, the appropriate make command
must be issued in the APPL directory to assemble the APPL library
for the local machine. Executable name: adpacp.

parallel csdb This is the same as parallel above, except that the faster C-based
scienti�c database library is linked instead of the standard scienti�c
database library. See compiling notes under parallel and csdb.
Executable name: adpacp.

parallel dbx This is the same as parallel above, except that speci�c compiler
options have been enabled to utilize the UNIX dbx debugging facility.
See compiling notes under parallel and dbx. Executable name: adpacp.

parallel csdb dbx This is the same as parallel dbx above, except that the faster C-based
scienti�c database library is linked instead of the standard scienti�c
database library. See compiling notes under parallel dbx and csdb.
Executable name: adpacp dbx.

parallel pvm This is the standard UNIX system compilation for the parallel
version of the ADPAC code using the PVM message passing library.
The standard APPL message passing library is incorporated as a
sublayer between the native PVM calls and the ADPAC programming
message-passing calls, and therefore creation of this executable
requires that a make has been issued in the APPL directory on the
current machine. The parallel code may only be executed using the
APPL compute function with a corresponding APPL procdef �le.
Prior to performing this compilation, the appropriate make command
must be issued in the APPL directory to assemble the APPL library
for the local machine. Executable name: adpacp pvm.

Silicon Graphics Power Challenge Make Options

power challenge This option is utilized when compiling the standard serial code on a
Silicon Graphics R8000 or R10000 Indigo2 or Power Challenge
computer. For best performance, several machine speci�c
optimizations are enabled. Executable name: adpac power challenge.

power challenge mpich This option is utilized when compiling the parallel code on a Silicon
Graphics R8000 or R10000 Indigo2 or Power Challenge computer
using the public domain MPI library MPICH. Executable name:
adpac power challenge mpich.

power challenge mpi This option is utilized when compiling the parallel code on a Silicon
Graphics R8000 or R10000 Indigo2 or Power Challenge computer
using the SGI version of MPI. Executable name:
adpac power challenge mpi.

HP Workstations Make Options

24 NASA CR{206600

hp This option is utilized when compiling the standard serial code on a
Hewlett-Packard computer running OS 10.0 or greater. For best
performance, several machine speci�c optimizations are enabled.
Executable name: adpac hp.

hp mpich This option is utilized when compiling the parallel code on a
Hewlett-Packard computer using the public domain MPI library
MPICH. Executable name: adpac hp mpich.

hp mpi This option is utilized when compiling the parallel code on a
Hewlett-Packard computer using the HP version of MPI. Executable
name: adpac hp mpi.

Sun Workstations Make Options

sun This option is utilized when compiling the standard serial code on a
Sun Microsystems computer. For best performance, several machine
speci�c optimizations are enabled. Executable name: adpac sun.

sun mpich This option is utilized when compiling the parallel code on a Sun
Microsystems computer using the public domain MPI library
MPICH. Executable name: adpac sun mpich.

sun mpi This option is utilized when compiling the parallel code on a Sun
Microsystems computer using the Sun version of MPI. Executable
name: adpac sun mpi.

Cray (UNICOS) Make Options

cray This option is utilized when compiling the standard code on a Cray
computer (implies a serial code). For best performance, the
aggressive optimization option of the Cray compiler has been
invoked. Executable name: adpac cray.

cray dbx This option is used for generating an executable version of the code
which is compatible with the Cray cdbx debugging facility. See
compiling notes under cray and dbx. Executable name:
adpac cray dbx.

IBM AIX Make Options

aix This option is used when compiling the standard serial code on an
IBM RS-6000 workstation running the AIX operating system.
Executable name: adpac aix.

aix csdb This option is identical to aix above, except that the faster C-based
scienti�c database library is used. See compiling notes under aix and
csdb. Executable name: adpac aix.

aix dbx This option is used for generating an executable version of the code
which is compatible with the IBM AIX dbx debugging facility. See
compiling notes under aix and dbx. Executable name: adpac aix dbx.

aix csdb dbx This option is identical to aix dbx above, except that the faster

NASA CR{206600 25

C-based scienti�c database library is used. See compiling notes under
aix, csdb, and dbx. Executable name: adpac aix dbx.

aix parallel This is the standard IBM RS-6000 AIX UNIX system compilation for
the parallel version of the ADPAC code. See compiling notes under
aix and parallel. Executable name: adpacp aix.

aix parallel csdb This option is identical to aix parallel above, except that the faster
C-based scienti�c database library is used. See compiling notes under
aix parallel and csdb. Executable name: adpacp aix.

aix parallel dbx This option is used for generating an executable parallel version of
the code which is compatible with the IBM AIX dbx debugging
facility. See compiling notes under aix parallel and dbx. Executable
name: adpacp aix dbx.

Linux Make Options

linux This option is utilized when compiling the standard serial code under
a computer running under the Linux operating system. Executable
name: adpac linux.

linux csdb This option is the same as linux except that the faster C-based
scienti�c database library is used. Executable name: adpac linux.

linux mpich This option is utilized when compiling the parallel code under Linux
using the public domain MPI library MPICH. See the compiling notes
under linux and adpac mpich. Executable name: adpac linux mpich.

linux csdb mpich This option is the same as linux mpich except that the faster C-based
scienti�c database library is used. See the compiling notes under
linux, csdb, and adpac mpich. Executable name: adpac linux mpich.

nCUBE2 Vertex Operating System Make Options

ncube This is the standard nCUBE 2 system compilation for the parallel
version of the ADPAC code. The nCUBE version of the APPL
message passing library is incorporated. See compiling notes under
parallel. Executable name: adpacp ncube.

ncube csdb This option is identical to ncube above, except that the faster
C-based scienti�c database library is linked instead of the standard
scienti�c database library. See compiling notes under ncube and csdb.
Executable name: adpacp ncube.

ncube dbx This option is used when compiling the parallel code for the nCUBE
parallel computer using the VERTEX operating system and the
nCUBE dbx debugging facility. See compiling notes under ncube and
dbx. Executable name: adpacp ncube dbx.

ncube csdb dbx This option is the same as ncube dbx above, except that the faster
C-based scienti�c database library. See compiling notes under ncube,
dbx, and csdb. Executable name: adpacp ncube dbx.

26 NASA CR{206600

ncube csdb no2d This option is used when compiling the parallel code for the nCUBE
parallel computer using the VERTEX operating system and the
faster C-based scienti�c database library. This option also eliminates
all 2-D subroutines to minimize the size of the executable, which is
useful for strictly 3-D problems on multiprocessing computers with
limited memory per processor. See compiling notes under ncube and
csdb. Executable name: adpacp ncube no2d.

NASA-Lewis Research Center Speci�c Make Options

lace This option is used when compiling the standard parallel code for the
NASA-Lewis LACE workstation cluster computing environment.
Executable name: adpacp lace.

lace csdb This option is identical to lace above, except that the faster C-based
scienti�c database library is used. See compiling notes under lace and
csdb. Executable name: adpacp lace.

Source Directory Maintenance Make Options

help This option lists and describes all available Make�le options. No
executable is created.

clean This option cleans up the source directory by removing all object
�les. No executable is created.

realclean This option really cleans up the source directory by removing all
object and library �les. No executable is created.

onesource This option concatenates all the ADPAC source �les into a single
source �le name adpac.onesource.f. This single source can then be
compiled by hand on those machines for which an appropriate make
option is not available. It is up to the user to link in the necessary
library �les (CSDB, APPL, etc) for creation of an executable. No
executable is created.

3.5 ADPAC Input/Output Files

In this section, the various input/output data �les related to a calculation using the
ADPAC program are described. In order to understand the �le naming convention, the
concept of a case name must �rst be detailed. All �les used in an ADPAC calculation are
named according to a standard naming convention of the form:

case.extension

where case is a unique, user-speci�able name usually identifying the geometry or ow
condition being investigated, and extension is a name describing the type of �le. The case
name must be speci�ed in the standard input �le described below. A list and description
of each of the �les used or generated by ADPAC is given in Table 3.1.

NASA CR{206600 27

Table 3.1: Description of input/output �les and UNIX-based �lenames for ADPAC .
Name Description

case.input Standard input �le
case.boundata Block boundary de�nition �le
case.output Standard output �le (from output redirection only)
case.mesh Mesh �le (PLOT3D compatible)
case.p3dabs Final PLOT3D output �le (absolute ow)
case.p3drel Final PLOT3D output �le (relative ow)
case.p3d1eq Final PLOT3D output �le (1-eq. turbulence model data)
case.p3d2eq Final PLOT3D output �le (2-eq. turbulence model data)
case.bf.# 2-D blockage/body force �le for block number #
case.p3fr.# Instantaneous PLOT3D interval output �le

(absolute ow). The frame number is given by #.
case.img.# Instantaneous Silicon Graphics image �le for graphics

interactive display. The frame number is given by #.
case.restart.new New restart �le (output by code)
case.restart.old Old restart �le (used as input for restart runs)
case.restart SA.new New 1-eq. turbulence model restart �le (output by code)
case.restart SA.old Old 1-eq. turbulence model restart �le (used as input for restart runs)
case.restart KR.new New 2-eq. turbulence model restart �le (output by code)
case.restart KR.old Old 2-eq. turbulence model restart �le (used as input for restart runs)
case.converge Solution residual convergence history �le
case.converge SA 1-eq. turbulence model residual convergence history �le
case.converge KR 2-eq. turbulence model residual convergence history �le
case.sixpac SIXPAC block subdivision �le (parallel only)
Ncase.bacpac BACPAC block reconstruction �le (parallel only)
case.blkproc ADPAC block/processor assignment �le (parallel only)
procdef APPL process description �le (APPL parallel only)
case.axi.mesh Equivalent axisymmetric mesh output by body

force calculation
case.axi.restart.new Equivalent axisymmetric ow restart output by

body force calculation

28 NASA CR{206600

The standard input, standard output, boundary data, and convergence history �les
are stored in ASCII format. All other �les utilize the Scienti�c DataBase Library
(SDBLIB) [16, 17] format. The mesh �le and PLOT3D plot output �les are compatible
with the PLOT3D multiple grid, binary de�nition (see Sections 3.8 and 3.11 for a
description and coding examples of the SDBLIB binary format). Files dealing with the
parallel execution of the ADPAC code are described in Chapter 4.

The standard input and standard output �les are directed at runtime using the
standard UNIX redirection syntax as:

adpac executable name < case.input > case.output

If a restart run is desired, the user must move the most current output restart �le from:

case.restart.new

to the default input restart �le name:

case.restart.old

each time the code is restarted. A more detailed description of the use and format of the
ADPAC �les is presented in the sections which follow.

3.6 ADPAC Standard Input File Description

The standard ADPAC input �le case.input contains the user-speci�ed parameters which
control the basic operation of the code during execution. During code execution, the input
�le is read one line at a time as a character string, and each string is parsed sequentially
to determine the speci�c program action in each case. The standard input �le utilizes a
keyword input format, such that any line which does not contain a recognizable keyword
is treated as a comment line. Therefore, the user may place any number of comments in
the �le (so long as the line does not contain a keyword input string in the form described
below), and code execution is unaltered. Comments may also be placed after the variable
assigned to the keyword as long as there are one or more blanks separating the keyword
value from the comment string. All input �le lines are echoed to the standard output, and
the program response to each line is listed when a speci�c action is taken.

All keyword input lines are given in the following format:

KEYWORD = Value Comment String

where KEYWORD is one of the recognized keywords described below, and Value is the
speci�c value to be assigned to that variable. The input line must contain the equals sign
(=) with one or more blanks on both sides in order to be recognized. The Comment String

must be separated by one or more blank spaces from the Value. Therefore, the lines:

NASA CR{206600 29

DIAM = 10.000

DIAM = 10.000

DIAM = 10.000 This is the diameter.

are valid keyword input lines assigning the value 10.0 to the variable associated with the
keyword DIAM. Conversely, the lines:

DIAM= 10.000

DIAM =10.000

DIAM=10.000

are not recognizable keyword input lines (in spite of the presence of the keyword DIAM),
because of the lack of proper placement of the blanks about the equals sign (=). The
purpose for this restriction is to permit keyword variables in comment lines, and to help
users to generate readable input �les. All keyword values are either real numbers (which,
in many cases, are converted to integers in the code) or character strings. A sample
ADPAC standard input �le containing a number of typical use keywords is listed in
Figure 3.2.

It is unnecessary to specify all possible keywords in every input �le. The
ADPAC code is programmed with a default set of input variables such that the only input
variable which must be present is the CASENAME (described below) which is used to
assign input/output �le names. A list and description of all input keywords and their
default values are listed below.

30 NASA CR{206600

--

ADPAC Input File

--

NASA 1.15 PRESSURE RATIO FAN - 2 BLADE ROWS

--

VARNAME = VARIABLE VALUE COMMENT

--

CASENAME = nasa The case name is "nasa"

FMULTI = 3.0 Three mesh levels for multi-grid

FSUBIT = 1.0 1 subiteration on each coarse mesh level

FFULMG = 1.0 Use "full" multi-grid

FCOAG1 = 3.0 Start "full" multi-grid on 3rd mesh level

FCOAG2 = 2.0 End "full" multi-grid on 2nd mesh level

FITFMG = 150.0 150 "full" multi-grid iterations per level

RMACH = 0.750000 Reference Mach Number for initialization

FINVVI = 0.000000 0.0-Inviscid Flow, 1.0-viscous flow

GAMMA = 1.400000 Specific heat ratio

PREF = 2116.220000 Reference Total Pressure (lbf/ft**2)

TREF = 518.670000 Reference Total Temperature (Deg. R)

RGAS = 1716.260010 Gas constant (ft-lbf/slug-deg R)

DIAM = 9.000000 Reference diameter (ft.)

EPSX = 1.000000 Residual smoothing coefficient in i direction

EPSY = 1.000000 Residual smoothing coefficient in j direction

EPSZ = 1.000000 Residual smoothing coefficient in k direction

VIS2 = 0.500000 Fine mesh 2nd order dissipation coefficient

VIS4 = 0.015625 Fine mesh 4th order dissipation coefficient

VISCG2 = 0.125000 Coarse mesh dissipation coefficient

CFL = -5.000000 <0.0, Steady flow, >0.0, unsteady flow

FNCMAX = 150.000000 150 iterations on fine mesh level

PRNO = 0.700000 Gas Prandtl number = 0.7

PRTNO = 0.900000 Turbulent Prandtl number = 0.9

FREST = 0.000000 No restart file is read in

RPM(1) = -1000.000000 Rotational speed for block #1 is -1000.00 RPM

RPM(2) = -1000.000000 Rotational speed for block #2 is -1000.00 RPM

RPM(3) = 0.000000 Rotational speed for block #3 is 0.00 RPM

RPM(4) = 0.000000 Rotational speed for block #4 is 0.00 RPM

ENDINPUT

Figure 3.2: Sample ADPAC input �le speci�cation (case.input).

NASA CR{206600 31

INPUT KEYWORDS

ADPAC Standard Input File Keyword Description

ADVR(num) [0.0]
The ADVR keyword value determines the rotational speed (in terms of an advance ratio)
of the mesh block number speci�ed by the value num. By default, block rotational speeds
are zero unless either a RPM or an ADVR keyword are speci�ed. The advance ratio is
inherently tied to the freestream Mach number speci�ed in the value associated with the
keyword RMACH. If the mesh has not been correctly non-dimensionalized, or if the value
of RMACH is incorrect, it is possible that an incorrect value of rotational speed would be
speci�ed in the calculation. The use of ADVR is normally only employed for propeller
performance calculations.

BFFILE(num) [default �le name]
The BFFILE keyword value determines the name of the �le used to read in the data for
the blade blockage and body force source terms used to represent the e�ects of embedded
blade rows in 2-D axisymmetric ow calculations. The �le speci�ed by BFFILE is used to
describe the terms for the block number indicated by the value of num. Body force data
�les created by the ADPAC program are named according to the �le naming convention
described in Section 3.5.

CASENAME
The CASENAME keyword value is used to set the case name which is used to de�ne all
input/output �le names during an ADPAC run (see Section 3.5 for details). The case name
is limited to an 80 character string, and cannot contain embedded blanks. The case name
has no default value, and as such, all input �les must contain the CASENAME keyword.

CCP [1.6]
The CCP keyword sets one of the two variable coe�cients in the algebraic Baldwin-Lomax
turbulence model; the other user-de�ned coe�cient is CKLEB. Based on a sensitivity
analysis by Granville [18], the option to modify the coe�cients in the standard
Baldwin-Lomax turbulence model was added to ADPAC . The standard value for this
coe�cient from the original Baldwin-Lomax model is Ccp = 1:6. The variation of these
model coe�cients with respect to pressure gradient is shown in Figure 3.3; the values for
Ccp are read o� the left-hand y-axis and range from 1.0 to 1.80. The plot shows regions
for both favorable and adverse pressure gradients, such that the values of the coe�cients
can be chosen properly for either compressor or turbine applications.

CFL [-5.0]
The CFL keyword de�nes the value of the time step multiplier used in the time-marching
solver. The algorithm is sensitive to the sign of the value used for CFL in determining the
manner in which the time-marching solver is applied. If CFL < 0.0, local time stepping is
used (steady ow only) and each cell is advanced in time according to the local maximum
allowable time step. If CFL > 0.0, then a time-accurate time-marching solution is
performed using an explicit Runge-Kutta algorithm where the time step is based on the
value of j CFL j �(�t)min and (�t)min is the minimum of all local time steps. The
absolute value of CFL is used as a multiplier for the time step (larger absolute values
indicate larger time steps). A value of -5.0 is normally used for steady ow calculations,

32 NASA CR{206600

INPUT KEYWORDS

0.0 0.5 1.0 1.5 2.0
Coles wake factor, Π

0.80

1.00

1.20

1.40

1.60

1.80

2.00

CCp

0.44

0.48

0.52

0.56

0.60

0.64

0.68

CKleb

Z
er

o
P

re
ss

ur
e

G
ra

di
en

t

CKleb

Ccp

Adverse Pressure Gradient
Favorable
Pressure
Gradient

Figure 3.3: Variation of Ccp and CKleb with Coles wake factor (�).

and values as high as 7.0 have been used successfully for time-accurate calculations. The
value of CFL is also used implicitly in the eigenvalue scaling terms in the implicit residual
smoothing algorithm, such that larger values of CFL imply increased residual smoothing
(see the description of the implicit residual smoothing algorithm in Appendix A and the
description of CFMAX).

When FIMPLIC = 1.0, the code uses another implicit techniques and the global
time step is set by the input keyword FDELTAT. In this case, the value of CFL now
controls the \pseudo" time step used during the inner iteration strategy at each global
time step. In this case, each global time step can be viewed as a steady state solution, and
the variables CFL, CFMAX, FMULTI, etc. retain their meanings in this context, and
should be set as in any steady state solution. The implicit time-dependent solution (and
global time-dependent iteration strategy) is controlled by the variables FIMPLIC,
FDELTAT, FNTSTEP, FMGTSTEP, FIMPFAC, and FTIMFAC.

CFMAX [2.5 (four-stage scheme), 3.5 (�ve-stage scheme)]

The CFMAX variable is used to de�ne the maximum allowable time step multiplier for
the explicit time-marching scheme without residual smoothing. This value is used in the
implicit residual smoothing routine to adjust the smoothing coe�cients for variations in
time steps (see Appendix A). Normally referred to as a CFL number, the variable
CFMAX represents the maximum allowable CFL number for the time-marching scheme
without residual smoothing, while the variable CFL represents the actual CFL number
used in the calculation with residual smoothing. The ratio of CFL to CFMAX is used to
adjust the amount of smoothing in the residual smoothing operator. Increasing CFMAX
decreases the magnitude of the residual smoothing coe�cients and therefore decreases the
overall smoothing. Based on linear stability analysis, the four-stage Runge-Kutta
time-marching scheme (FSOLVE = 1.0) permits a maximum CFL number of 2

p
2. For

NASA CR{206600 33

INPUT KEYWORDS

simplicity, this value is normally approximated as 2.5 which provides an additional margin
of safety. Under certain circumstances, it may be desirable to reduce CFMAX as low as
2.0 to aid convergence by arti�cially increasing the amount of residual smoothing. For the
�ve-stage scheme (FSOLVE = 2.0) values of 3.0 to 3.5 are recommended.

CKLEB [0.3]
The CKLEB keyword sets one of the two variable coe�cients in the algebraic
Baldwin-Lomax turbulence model; the other user-de�ned coe�cient is CCP. Based on a
sensitivity analysis by Granville [18], the option to modify the coe�cients in the standard
Baldwin-Lomax turbulence model was added to ADPAC . The standard value for this
coe�cient from the original Baldwin-Lomax model is CKleb = 0:3. The variation of these
model coe�cients with respect to pressure gradient is shown in Figure 3.3; the values for
CKelb are read o� the right-hand y-axis and range from 0.44 to 0.64. The plot shows
regions for both favorable and adverse pressure gradients, such that the values of the
coe�cients can be chosen properly for either compressor or turbine applications. While it
is recognized that the default value of CKLEB (0.3) from the original model development
does not necessarily correlate with the default value of CCP (1.6), it does lie in the
favorable pressure gradient region and it is left to the user to be aware of the selection of
this turbulence model coe�cient.

CMUTPS, CMUTSS [14.0]
The CMUTSS and CMUTPS keywords determine the ratio of local turbulent to laminar
viscosity required to initiate transition for the point transition model in the ADPAC body
centered mesh algebraic turbulence model activated by the keyword FTURBCHT. This
simpli�ed transition model maintains laminar ow until the ratio of near wall turbulent
viscosity to near wall laminar viscosity exceeds the value of CMUTSS or CMUTPS for
the \suction side" and \pressure side", respectively, of the airfoil in question. The
transition model parameters are illustrated in Figure 3.4. A ratio of 14.0 is recommended
for all cases unless speci�c testing has indicated an alternate value. These input variables
are only valid for C-type meshes about airfoils. It should be noted that these variables will
have no e�ect when FINVVI=0.0 (inviscid ow), or when either F1EQ=1.0 or F2EQ=1.0
(one- or two-equation turbulence model enabled) or when FTURBCHT=0.0 (transition
model not activated).

DIAM [1.0]
The DIAM keyword is used as a dimensionalizing length scale for the mesh system for a
given case. The ADPAC code assumes that the mesh has been generated in a
nondimensional fashion, and must be dimensionalized before execution. The value of the
DIAM variable is used to convert the supposed nondimensional mesh coordinates into
dimensional coordinates with units of feet. In other words, if the mesh has been generated
using a length scale of inches, then the value of DIAM should be 1

12 , or 0.083333 in order
to convert the mesh units to units of feet. If the mesh units are already in feet, then the
value of DIAM should be simply 1.0. Many mesh generation systems for turbomachinery
geometries nondimensionalize the mesh by a reference diameter determined from the
turbomachinery geometry such that the maximum value of any radial coordinate in the
mesh is 0.5. In this case, the value of DIAM should be the diameter of the turbomachine
in feet. Proper speci�cation of the DIAM value is critical to achieve the correct ow

34 NASA CR{206600

INPUT KEYWORDS

Axial Chord

Pressure Side

S
uction S

ide

Transition forced
at XTRANSS
on suction surface

XTRANSS

XTRANPS

Transition forced
at XTRANPS
on pressure surface

CMUTSS sets
transition when
x < XTRANSS

CMUTPS sets
transition when
x < XTRANPS

0.0 1.0

x

θ

Figure 3.4: ADPAC body-centered mesh turbulence model nomenclature summary.

NASA CR{206600 35

INPUT KEYWORDS

Reynolds number and tip speed for rotating geometries. Many problems can be traced to
improper speci�cation of the DIAM value and the user should take care to understand the
use of this keyword. When in doubt, the user should remember the simple rule that the
actual mesh units, when multiplied by the value of DIAM should result in physical
lengths expressed in feet.

ENDINPUT
When the ADPAC program encounters the keyword ENDINPUT no additional input �le
lines are parsed for input keyword values. Any lines following the ENDINPUT statement
are ignored, except when the graphics display system is in e�ect across a network, in
which case the statements following the ENDINPUT statement must contain two blank
lines and the Internet network address of the destination display device (see Chapter 5).

EPSTOT [0.1]
The EPSTOT keyword determines the value of the smoothing coe�cient employed in the
post multi-grid smoothing algorithm described by the trigger FTOTSM. This coe�cient is
only used when FTOTSM = 1.0. The value of the coe�cient may be any positive number,
but for most circumstances, a value between 0.0 and 0.25 is suggested (larger values imply
more smoothing). This option is normally employed for enhanced code stability during
the multi-grid solution process (FMULTI > 1).

EPSX, EPSY, EPSZ [1.0]
The EPSX, EPSY, and EPSZ keywords set the value of the implicit residual smoothing
coe�cient multipliers in the i, j, and k coordinate directions, respectively. The values of
EPSX, EPSY, and EPSZ are used as simple multipliers for the residual smoothing
coe�cients calculated by the eigenvalue scaled residual smoothing scheme described in
Appendix A. If EPSX, EPSY, or EPSZ = 0.0, then no smoothing is applied for the given
coordinate direction. The user should be aware that the keyword variable FRESID
controls the global application of residual smoothing in the solution algorithm, and in the
case where FRESID=0.0 (residual smoothing disabled), the EPSX, EPSY, and EPSZ
have no impact on the solution. The default value for the coe�cient multipliers is 1.0.
Any value larger than 1.0 simply implies excess smoothing and may be useful for cases
with poor convergence or undesirable mesh quality. If a value larger than 3.0 is required
to stabilize a solution, this generally indicates some sort of problem in the calculation (i.e.,
poor mesh aspect ratio, bad boundary speci�cation) or it might suggest that FRESID has
been set inadvertently to 0.0. Values less than 1.0 will likely cause code instabilities for
values of jCFLj greater than 2.0. Occasionally for cylindrical coordinate system solutions
involving a centerline or sting with very small radii, the value of EPSX, EPSY, or EPSZ
which corresponds to the \radial" direction must be reduced to 0.25-0.5 to maintain
stability. For these cases, increasing the sting radius is likely to yield a more robust model.

F1EQ [0.0]
The F1EQ keyword assigns a trigger which determines the activation of the one-equation
Spalart-Allmaras turbulence model. This turbulence model can provide superior
prediction of turbulent ows particularly in free shear layers and/or separated ow regions.
The one-equation model utilizes additional speci�cation of data at inow boundaries (see
e.g. INLETT, INLETG) to prescribe the \freestream" turbulence level, and the turbulent

36 NASA CR{206600

INPUT KEYWORDS

viscosity is updated through the solution of one additional transport equation (see
Appendix A). The one-equation model is not enabled when F1EQ=0, and is enabled when
F1EQ=1.0. Setting F1EQ=1.0 will disable all other turbulence models in ADPAC .

F2EQ [0.0]
The F2EQ keyword assigns a trigger which determines the activation of the two-equation
(k�R) turbulence model. This turbulence model can provide superior prediction of
turbulent ows with separation, but at a substantially larger computational cost. The
two-equation model utilizes additional speci�cation of data at inow boundaries (see e.g.
INLETT, INLETG) to prescribe the \freestream" turbulence level, and the turbulent
viscosity is updated through the solution of two additional transport equations and a
\pointwise" eddy viscosity evaluation (see Appendix A). The two-equation model is not
enabled when F2EQ=0, and is enabled when F2EQ=1.0. If both F1EQ and F2EQ are set
to 1.0, ADPAC will use the one-equation turbulence model and set F2EQ to 0.

FBCONF [0.0]
The FBCONF keyword assigns a trigger which determines the iteration number at which
the boundary conditions are frozen. This trigger was added for those cases where
convergence is apparently hindered by \noise" from the boundary conditions. Caution
must be exercised when using the FBCONF variable due to the fact that the ADPAC code
could ultimately diverge when all of the boundary conditions are frozen. This option is
normally turned o� [0.0] and is only used for debugging purposes.

FBCWARN [1.0]
The FBCWARN keyword assigns a trigger which controls the error checking for outer
block boundary conditions normally performed by the ADPAC code prior to execution.
Following initialization, ADPAC normally processes each mesh block and checks to see if
the user has adequately speci�ed boundary conditions over the six outer surfaces of each
mesh block. If any portion of an outer boundary does not have some type of boundary
conditions speci�ed, an error message is normally issued and the code will terminate
processing. Under some conditions, the user may have intentionally neglected to specify a
boundary condition on an outer mesh block surface, and it is therefore convenient to
eliminate this error processing. The FBCWARN trigger controls the actuation of this
error handling facility. When FBCWARN=1.0, the error handling is enabled; when
FBCWARN=0.0, the error handling is disabled.

FBFRLX [1.0]
The FBFRLX keyword sets the relaxation factor used when updating the body forces.
This is used for 2-D axisymmetric solutions. Additional details about using body forces in
ADPAC is found in Sections 2.3 and 3.9.

FCARB(num) [0.0]
The keyword FCARB(num) sets a block speci�c trigger for the mesh block number
speci�ed by num which determines, on a block-by-block basis, whether the Cartesian
(FCARB(num) = 1.0) or the cylindrical (FCARB(num) = 0.0) solution algorithm is
employed by that block. The ADPAC code permits mixed cylindrical and Cartesian
solution blocks in a single calculation. While the variable FCART may be used to set the

NASA CR{206600 37

INPUT KEYWORDS

global value of mesh blocks for either cylindrical or Cartesian solution status, the variable
FCARB(num) may be utilized to set speci�c blocks one way or the other. It must be
noted that the variable FCARB(num) will always override the status implied by FCART.
At present, the only boundary condition which permits inter-block communication
between mixed cylindrical and Cartesian blocks is BCPRR.

FCART [0.0]
The FCART keyword assigns a trigger which controls the cylindrical/Cartesian coordinate
system solution scheme in the the ADPAC code. If FCART = 0.0, then all blocks (except
those speci�cally altered by the FCARB input variable) are treated as cylindrical
coordinate system blocks. If FCART = 1.0, then all blocks (except those speci�cally
altered by the FCARB input variable) are treated as Cartesian coordinate system blocks.

FCOAG1 [1.0]
The FCOAG1 keyword speci�es the initial, or coarsest coarse mesh level upon which the
\full" multi-grid calculation is initially applied (for additional details, see the description
of FFULMG). When multiple coarse mesh levels are available for processing, it is
occasionally useful to specify the initial coarse mesh level in the \full" multi-grid sequence
in order to avoid wasted computations on lower mesh levels. Typically, FCOAG1 is set to
FMULTI (start \full" multi-grid on coarsest mesh level). In some cases (when FMULTI is
larger than 3.0) it may be advisable to set FCOAG1 to 3.0, and avoid additional
processing on coarser meshes during the \full" multi-grid startup process. A owchart of
the ADPAC iteration and multi-grid control algorithm is given in Figure 3.5. An example
is given in the description of FCOAG2.

FCOAG2 [2.0]
The FCOAG2 keyword speci�es the �nal or �nest coarse mesh level upon which the \full"
multi-grid calculation is applied (for additional details, see the description of FFULMG).
When multiple coarse mesh levels are available for processing, it is occasionally useful to
specify the �nal coarse mesh level in the \full" multi-grid sequence in order to examine
the ow�eld without actually performing any calculations on the �ne mesh. Typically,
FCOAG2 is set to 2.0, which indicates that the \full" multi-grid startup procedure utilizes
all mesh levels from FCOAG1 to 2 before starting any processing on the �ne mesh. A
owchart of the ADPAC iteration and multi-grid control algorithm is given in Figure 3.5.

FCOCOM [0.0]
The FCOCOM keyword assigns a trigger which determines the method by which cell face
areas and cell volumes are determined for the coarse mesh levels of a multi-grid solution.
When FCOCOM=0.0, coarse mesh cell face areas and cell volumes are determined in
exactly the same manner as the �ne mesh (using the 8 mesh points de�ning the vertices of
the cell and computing a series of cell face diagonal cross products for the areas, and
computing a cell center and additional dot products for the cell volume). When
FCOCOM=1.0, the coarse mesh cell face areas and cell volumes are computed by
summing the cell face areas and cell volumes of the enclosed �ne mesh cells relative to
each coarse mesh cell. The procedure de�ned by FCOCOM=1.0 is believed to be a more
consistent representation of the coarse to �ne mesh injection/interpolation process, but
experience has not shown any great di�erence using either method.

38 NASA CR{206600

INPUT KEYWORDS

Start
Program

Multigrid
Run?

Full
Multigrid?

FMULTI = 1.0

FMULTI > 1.0

No

Yes

No Yes

FNCMAX iterations
on fine mesh (Level 1) only

FNCMAX iterations on
fine mesh (Level 1) using
FMULTI levels of multigrid
 with FSUBIT subiterations
on each coarse mesh level

FFULMG = 0.0 FFULMG = 1.0

FITFMG iterations on each mesh level from
FCOAG1 to FCOAG2 using any possible
levels of multigrid up to FMULTI with
FSUBIT subiterations on each coarse level

Interpolate to
fine mesh level

Interpolate to
next mesh level

End
Program

Loop on M
esh Levels

F
C

O
A

G
1

 to F
C

O
A

G
2

Figure 3.5: ADPAC input keyword multi-grid cycle and time-marching iteration management
owchart.

NASA CR{206600 39

INPUT KEYWORDS

FCONVRG [-100.0]
The FCONVRG keyword speci�es the log10 root-mean-square residual level at which the
solution is deemed converged. The solution convergence is monitored and when the log10
root-mean-square residual level is less than FCONVRG, the time-marching process is
terminated and the solution is output. In general, the solution should not be considered
converged unless the log10 root-mean-square residual is less than -6.0. The authors do not
recommend the use of this variable for explicit time-dependent calculations. The
FCONVRG variable is useful for terminating the inner iterations of an implicit
time-dependent solution.

FDEBUG(type) [0.0]
The keyword FDEBUG(type) de�nes a block number for the debug output type speci�ed
by type which determines, on a type by type basis, whether debug output from the
ADPAC run is printed to the standard output. When enabled, this variable will generate
an extreme amount of output and should therefore be used only in a controlled debugging
environment. The value of the variable FDEBUG(type) determines for which blocks the
particular type of output is enabled. The following debug output types are currently
supported:

FDEBUG(1) Print the input (Cartesian) mesh points

FDEBUG(2) Print the (converted) cylindrical mesh points

FDEBUG(3) Print the cell face areas

FDEBUG(4) Print the cell volumes

FDEBUG(5) Print the cell ow data

FDEBUG(6) Print the cell time steps

FDEBUG(7) Print the cell convective uxes

FDEBUG(8) Print the cell dissipative uxes

FDEBUG(9) Print the cell di�usive uxes

FDEBUG(10) Print the cell implicit residual smoothing data

FDELTAT [0.0]
The FDELTAT keyword assigns the value for the physical time increment (in seconds)
used during a time-dependent solution (either explicit or implicit). For explicit solutions,
it is up to the user to ensure that the value of FDELTAT does not violate the stability
characteristics of the explicit ow solver. For implicit solutions, this value should reect a
reasonable number of global time steps (approximately 100 for periodic ow) over the
course of the unsteady aerodynamic phenomena of interest.

FDESIGN [0.0]
The FDESIGN keyword assigns a trigger which determines directly whether to use the
body force design system calculation procedure. When enabled, this option dictates that a

40 NASA CR{206600

INPUT KEYWORDS

solution be performed on a 2-D axisymmetric grid representative of a throughow
calculation for a turbomachinery owpath. The solution requires the input of a body force
�le (see the description of BFFILE) which speci�es the blade blockage (a description of
the contents of a body force �le is given in Section 3.9). The 2-D grid must be constructed
such that it represents the 2-D hub to tip mean ow stream surface. In other words, if the
mean ow involves swirl, then the grid is warped in the circumferential direction to
indicate the degree of swirl represented by the mean stream surface. The ADPAC ow
solver then iteratively updates the body forces internal to the code until the predicted
mean stream surface matches the mean stream surface de�ned by the mesh. This feature
was developed for use in a design-like environment wherein gross ow properties such as
turning may be known, but speci�c airfoil shapes may not be known.

FFAST [0.0]
The FFAST keyword assigns a trigger which incorporates some simpli�cations of the
ADPAC multi-grid algorithm which reduces the CPU time per multi-grid cycle. The CPU
savings a�orded when this option is enabled (FFAST=1.0) is estimated to be about 20%.
Unfortunately, the ADPAC algorithm is less stable using the procedures enabled by
FFAST=1.0 and in general, this option is not recommended.

FFILT [1.0]
The FFILT keyword assigns a trigger which determines directly whether the added
dissipation routines are called during the time-marching process. If FFILT = 0.0, then no
added dissipation is calculated. It is also possible to turn o� the added dissipation by
setting the values of VIS2 and VIS4 to 0.0; however, the use of FFILT avoids the
calculation of the dissipation terms entirely. It is unlikely that any value other than 1.0 is
required except for code debugging purposes.

FFULMG [0.0]
The FFULMG keyword assigns a trigger which determines whether the \full" multi-grid
solution procedure is applied or whether the standard multi-grid procedure is used. The
use of \full" multi-grid is advisable (but not required) when a new calculation is being
started as a means of rapidly generating a better initial guess for the �nal ow�eld. If the
solution is being restarted from a previous calculation (FREST=1.0), it is usually
advisable to set FFULMG to 0.0 to avoid destroying the initial data read from the restart
�le (a warning message is issued when this combination is speci�ed). A owchart of the
ADPAC iteration and multi-grid control algorithm is given in Figure 3.5.

FGRAFINT [1.0]
The FGRAFINT keyword determines the number of iterations between ow�eld display
updates for the ADPAC real time graphics display system. This option is only valid when
FGRAFIX = 1.0, and is subject to a number of other restrictions for the graphics display
system (see the description of input keywords FGRAFIX and FIMGSAV, and the
description of the graphics display system, Chapter 5). The default value for FGRAFINT
is 1.0, which indicates that the graphics display will be updated every iteration. This can
cause excessive computational and network overhead, and the user should be aware of the
potential problems when using the graphics display features. The use of the graphical
display features of the ADPAC code are not generally recommended.

NASA CR{206600 41

INPUT KEYWORDS

FGRAFIX [0.0]

The FGRAFIX keyword sets a trigger which controls the generation of the real time
interactive graphics display in the ADPAC program. A value of FGRAFIX = 1.0 indicates
that the interactive graphics display facility is desired, while FGRAFIX = 0.0 turns this
option o�. When functional, the graphics screen is updated with the latest available ow
data every FGRAFINT iterations. Graphics images can be automatically captured on
speci�c computer hardware every FIMGSAV iterations as a means of creating ow�eld
animations (see Chapter 5). The generation of interactive, real time graphics images
increases the overall computational cost, and can cause network overloading in some cases
due to the transmission of graphics information. The use of the graphical display features
of the ADPAC code are not generally recommended.

FIMGINT [0.0]

The FIMGINT keyword determines the number of iterations between ow�eld graphics
display image capturing available on Silicon Graphics computers for the ADPAC real time
graphics display system. This option is only valid when FGRAFIX = 1.0, and FIMGSAV
= 1.0, and is subject to a number of other restrictions for the graphics display system (see
Chapter 5). The default value for FIMGINT is 0.0, which turns o� the image capturing.
This default value was chosen to prohibit accidental image capturing, which can quickly
�ll up a large amount of disk storage. The graphics display system can cause excessive
computational and network overhead, and the user should be aware of the potential
problems when using this feature of the ADPAC code. The use of the graphical display
features of the ADPAC code are not generally recommended.

FIMGSAV [0.0]

The FIMGSAV keyword sets a trigger which controls the Silicon Graphics computer
screen image capturing facility of the real time interactive graphics display in the
ADPAC program. A value of FIMGSAV = 1.0 indicates that the graphics image capturing
facility is desired, while FIMGSAV = 0.0 turns this option o�. When the interactive
graphics display option has been enabled (see details for input keywords FGRAFIX,
FGRAFINT) the graphics screen is updated with the latest available ow data every
FGRAFINT iteration. When the image capturing facility is enabled, these graphics images
can be automatically captured on speci�c computer hardware every FIMGINT iterations
as a means of creating ow�eld animations (see Chapter 5). The capturing of many screen
images will also require a large amount of �le storage space (see Section 3.5 for a
description of the image capturing �le naming convention). The use of the graphical
display features of the ADPAC code are not generally recommended.

FIMPFAC [2.0]

The FIMPFAC keyword is a simple trigger which determines the degree of time-accuracy
employed in the implicit solution algorithm enabled by the keyword FIMPLIC. There are
four options available for this keyword. Values of 1.0 and 2.0 utilize the \fully" implicit
strategy described in Appendix A and are �rst- and second-order accurate in time,
respectively. Values of -1.0 and -2.0 utilize a lagged \fully" implicit strategy (thought to
improve stability) and are �rst- and second-order accurate in time, respectively.

42 NASA CR{206600

INPUT KEYWORDS

FIMPLIC [0.0]
The FIMPLIC keyword is a simple trigger to determine whether the iterative implicit
solution mode is enabled (enabled when FIMPLIC = 1.0). The implicit algorithm is used
only for time dependent ow calculations, and requires that the additional input ow
variables FDELTAT and FNTSTEP be speci�ed. The ADPAC code must also be compiled
with array parameter FIMPRA set to 1 to properly allocate array storage in the code.
When enabled, the implicit algorithm performs a global time marching loop strategy
whereby each iteration of the global loop involves an iterative solution of a pseudo
steady-state problem using the standard explicit time-marching strategy. The features of
this inner iteration problem is still governed by input variables such as CFL, CFMAX,
FMULTI, FNCMAX, etc. The global time increment for the outer loop is set by the value
of FDELTAT. The implicit algorithm occasionally exhibits unstable behavior and the
solution should initially be closely monitored. The user should fully understand the
implications and use of the implicit algorithm before attempting to utilize this option. A
brief theoretical description of the procedure is given in Appendix A.

FINVVI [0.0]
The FINVVI keyword is a simple trigger to determine whether the solution mode is for
inviscid ow (FINVVI = 0.0) or for viscous ow (FINVVI = 1.0). This trigger controls
whether the viscous stress ux contributions are calculated during the time-marching
process. This does not a�ect the application of boundary conditions, as this is completely
controlled by the speci�cations in the boundary data �le. As such, it is possible to run
viscous boundary conditions in an inviscid ow solution, and inviscid boundary conditions
in a viscous ow solution.

FITCHK [100.0]
The FITCHK keyword controls the number of iterations between job check-pointing in the
ADPAC program. Job check-pointing refers to the process of periodically saving the
ow�eld information to minimize the loss of data in the event that the job does not
terminate normally. As a safety feature, the ADPAC program writes out an updated
restart �le every FITCHK iterations. It is not necessary to write out intermediate restart
�les, but this is considered a good precaution against unexpected problems such as
computer failures or system administration quotas. A reasonable interval for
check-pointing is either 100 iterations (FITCHK = 100.0) or roughly the number of
iterations completed within one hour. The intermediate restart �les, as well as the �nal
restart �le, are all written to the same �le name, and therefore previous checkpoints
cannot be retrieved when the �le is overwritten (see Section 3.5 for restart �le naming
conventions). Job check-pointing only applies to the iterative cycles involving the �ne
mesh and does not apply to the coarse mesh iterations calculated during a \full"
multi-grid startup (see FFULMG).

FITFMG [100.0]
The FITFMG keyword dictates the number of iterations to be performed on each of the
coarse mesh levels during a \full" multi-grid startup sequence (see FFULMG). Typically,
the startup sequence is used only to generate a reasonable initial guess for the �ne mesh,
so the value of FITFMG is kept relatively low (� 100). The function of the keyword
FITFMG is illustrated graphically in Figure 3.5.

NASA CR{206600 43

INPUT KEYWORDS

FKINF [0.0001]
The FKINF keyword sets the initial value for the turbulence �eld and the value is
dependent upon the model selected. If the algebraic Baldwin-Lomax model is employed
(F1EQ = 0.0 and F2EQ = 0.0), the keyword FKINF is ignored. If the one-equation
Spalart-Allmaras model is employed (F1EQ = 1.0 and F2EQ = 0.0), FKINF sets the
initial value of � and should be set to approximately 20. If the two-equation k�R model
is employed (F1EQ = 0.0 and F2EQ = 1.0), FKINF sets the initial value of the
nondimensional k �eld (kinf=U

2
ref) and should be on the order of 0.0001.

FMGTSTEP [0.0]
The FMGTSTEP keyword assigns the number of global time steps to be evaluated on
coarse mesh levels for the implicit ow solver when the \full" multi-grid option FFULMG
is enabled. In the processing of large time-dependent calculations using the implicit ow
solver, it has been found useful to employ the \full" multi-grid type of startup procedure
for the time-dependent runs as well as the steady-state analyses. This basically initializes
the multiple time levels data arrays such that when the �ne mesh solution is activated, the
data in the previous time level arrays are initialized with something other than the
current solution, and a hopefully better approximation of the time-derivatives can be
performed. FMGTSTEP sets the number of implicit time steps performed on the coarse
meshes during the \full" multi-grid startup. This keyword will only be active when
FIMPLIC=1.0 and FFULMG=1.0. For a more detailed description of the \full" multi-grid
startup procedure, see the descriptions of FFULMG, FCOAG1, and FCOAG2

FMIXLEN [-1.0]
The FMIXLEN keyword triggers the mixing-length turbulence model. For positive values
of FMIXLEN, the algebraic Baldwin-Lomax model is bypassed and the turbulent eddy
viscosity is calculated using a mixing-length formulations. FMIXLEN should be set such
that FMIXLEN � DIAM is approximately 0.0025 ft (0.030 in).

FMULTI [1.0]
The FMULTI keyword assigns the number of multi-grid levels to be used during the
calculation. The code will analyze the dimensions of the �ne mesh to determine whether it
can be properly subdivided according to the number of multi-grid levels requested. If
FMULTI � 1.0, then the number of multi-grid levels is set to 1, and the calculation is
performed on the �nest mesh only without multi-grid acceleration. For unsteady ows
using the explicit time-marching strategy, the current multi-grid scheme is not valid, and
even though it is allowed, FMULTI should be set to 1.0. For time-dependent ows based
on the implicit time-marching strategy (FIMPLIC=1.0), the multi-grid algorithm may be
enabled as with any steady-state solution. A owchart of the ADPAC iteration and
multi-grid control algorithm is given in Figure 3.5.

FNCMAX [100.0]
The FNCMAX keyword controls the total number of iterations for a calculation without
multi-grid (FMULTI � 1.0), or the number of global iterations on the �nest mesh for a
multi-grid calculation (FMULTI > 1.0). The total number of iterations performed on all
meshes for a multi-grid run is controlled by a combination of FNCMAX, FMULTI,
FCOAG1, FCOAG2, FFULMG, FITFMG, and FSUBIT. See the descriptions of the

44 NASA CR{206600

INPUT KEYWORDS

variables FNCMAX, FMULTI, FCOAG1, FCOAG2, FFULMG, FITFMG, and FSUBIT
for further details. A owchart of the ADPAC iteration and multi-grid control algorithm is
given in Figure 3.5.

FNTSTEP [0.0]
The FNTSTEP keyword assigns the number of global time steps to be evaluated on the
�nest mesh during an implicit time-dependent solution. FNTSTEP sets the number of
global time steps performed while FNCMAX sets the number of inner iterations for each
global time step. The total physical time of the time-dependent implicit solution is
therefore FNTSTEP � FDELTAT. This variable is only active when FIMPLIC=1.0.

FRDMUL [0.0]
The FRDMUL keyword determines whether the boundary condition data for the coarse
mesh levels of a multi-grid run are generated from the �ne mesh boundary conditions
speci�ed in the ADPAC boundary data �le (FRDMUL = 0.0), or whether the coarse mesh
boundary speci�cations are read in from the boundary data �le (FRDMUL = 1.0). In
most cases, FRDMUL should be set to 0.0, and the program will determine the equivalent
coarse mesh boundary conditions from the �ne mesh speci�cations. For the purposes of
code debugging, or to permit multi-grid calculation on a mesh which does not possess
perfect \multi-grid" boundary segments (a boundary condition for the �ne mesh does not
begin or end at a mesh index which is compatible with the multi-grid sequence), it is
possible to allow the program into running multi-grid by arti�cially specifying an
equivalent coarse mesh boundary condition.

FRESID [1.0]
The FRESID keyword assigns a trigger which determines directly whether the implicit
residual smoothing routines are called during the time-marching process. If FRESID =
0.0, then no residual smoothing is applied. It is also possible to turn o� the residual
smoothing by setting the values of EPSX, EPSY, and EPSZ to 0.0; however, the use of
FRESID avoids the calculation of the smoothed residuals entirely. It is unlikely that any
value other than 1.0 is required except for code debugging purposes, or for calculations
involving CFL� 2.0.

FREST [0.0]
The FREST keyword assigns a trigger which controls the restart characteristics of the
ADPAC code. If FREST = 0.0, then no restart �le is used, and the ow variables are
initialized according to the scheme described under the input keyword RMACH. If
FREST = 1.0, then the code attempts to open a restart �le (case.restart.old), and the ow
variables are initialized by the values given in the restart �le. Restarting a calculation
from a previous calculation is often useful for breaking up large calculations into smaller
computational pieces, and may also provide faster convergence for cases which involve
minor changes to a previous calculation.

A third option is provided (FREST = -1.0) which allows ADPAC to restart from a
coarser mesh solution restart �le. For very large meshes which permit multi-grid, it may
be desirable to initiate the solution using less powerful computers by running on a
coarsened mesh �le (generated independently from the �ne mesh using the COARSEN

NASA CR{206600 45

INPUT KEYWORDS

program). The coarsened mesh must represent an exact coarsened mesh from the ultimate
�ne mesh (every other mesh line removed) for this procedure to work properly.

It should be mentioned that restart �les generated by the implicit time-dependent
solution strategy will contain additional time level data compared to a steady state restart
�le. It is possible to restart a time-dependent implicit solution from an explicit
steady-state restart �le and vice versa, at the expense of some loss of information. For
long time-dependent solutions involving multiple restarts, the most recent restart �les
must be utilized to properly predict the time-dependent ow behavior.

FRINF [0.001]
The FRINF keyword sets the initial value for the turbulence �eld and the value is
dependent upon the model selected. If the algebraic Baldwin-Lomax model (F1EQ = 0.0
and F2EQ = 0.0) or the one-equation Spalart-Allmaras model (F1EQ = 1.0 and F2EQ =
0.0) is employed, the keyword FRINF is ignored. If the two-equation k�R model is
employed (F1EQ = 0.0 and F2EQ = 1.0), FRINF sets the initial value of the
nondimensional R �eld (R / VrefLref) and should be set along the order of 0.001.

FSAVE [1.0]
The FSAVE keyword assigns a trigger which controls the restart �le output characteristics
of the ADPAC code. If FSAVE = 0.0, then no restart �le is written at the end of an
ADPAC run. If FSAVE = 1.0, then the code attempts to open a restart �le
(case.restart.new), and the ow variables are written to the restart �le for future
processing. Restarting a calculation from a previous calculation is often useful for
breaking up large calculations into smaller computational pieces, and may also provide
faster convergence for cases which involve minor changes to a previous calculation. The
recommended procedure is to always write a restart �le.

FSOLVE [1.0]
The FSOLVE keyword assigns a trigger which determines which type of explicit
time-marching strategy is employed on both �ne and coarse meshes. For FSOLVE = 0.0,
the standard four-stage Runge Kutta time-marching scheme is used with a single added
dissipation evaluation, and implicit residual smoothing at alternating stages. For FSOLVE
= 1.0, a modi�ed four-stage Runge Kutta time-marching scheme is used with two
evaluations of the added dissipation, and implicit residual smoothing at every stage. For
FSOLVE = 2.0, a �ve-stage Runge Kutta time-marching scheme is used with three
weighted added dissipation evaluations, and implicit residual smoothing at every stage.
FSOLVE = 1.0 is the recommended value, although the other schemes may provide
improved convergence at a somewhat di�erent computational cost per iteration.

FSUBIT [1.0]
The FSUBIT keyword determines the number of subiterations performed on coarse
meshes during the coarse mesh portion of the multi-grid cycle. As such, this variable is
actually only used when FMULTI > 1.0. Additional subiterations on coarse meshes during
the multi-grid cycle can often improve convergence, at the expense of some additional
computational work. The number of subiterations speci�ed by FSUBIT is applied at each
coarse mesh level during the multi-grid calculations process. A value of 1.0, 2.0, or 3.0 is

46 NASA CR{206600

INPUT KEYWORDS

typically best. A owchart of the ADPAC iteration and multi-grid control algorithm is
given in Figure 3.5.

FTIMEI [1.0]
The FTIMEI keyword assigns a trigger which determines the number of iterations between
time step evaluations. For best results, this should be 1.0, which implies that the time
step is re-evaluated at every iteration. However, this value can be increased to reduce
CPU time by re-evaluating the time step every FTIMEI iterations instead (at the possible
expense of irregular convergence). It is recommended that the value of FTIMEI not
exceed 10.

FTIMERM [0.0]
The FTIMERM keyword is utilized to control CPU quota during a run of the
ADPAC code. This variable is used primarily during execution under the Network Queuing
System (NQS), and the e�ect of this variable is di�erent between execution on a Cray
computer and a UNIX workstation. On the Cray, for jobs running under NQS, any
non-zero value for FTIMERM directs the code to determine how much CPU time remains
allocated to the current job during each time-marching iteration, and the ADPAC code
estimates how much of that CPU time is required to normally shut down the current job.
If the time remaining to the job allocation is indicated by TIME, and if the time required
to shutdown is SHUT , then the code will evaluate the expression:

TIME � SHUT + FTIMERM

where each term is in CPU seconds. If this expression is less than 0.0, then the code will
halt the time marching process and attempt to shut down so the various output �les can
be written prior to termination by NQS due to CPU quota. Note that if FTIMERM is a
negative number, then the code will shut down \early" in case additional programs must
run under a given NQS run.

On a UNIX workstation, NQS is usually not available, and the code keeps track of
accumulated CPU time and terminates normal job processing when the accumulated CPU
time exceeds the value of FTIMERM. This option can be used to cleanly stop an
ADPAC job after a prescribed amount of time. As an alternative to using FTIMERM, it is
generally recommended to determine the time required for a single iteration and set
FNCMAX accordingly to complete the ADPAC job prior to exceeding the time limit
speci�ed by FTIMERM. If FTIMERM = 0.0, then no action is taken under any
circumstances.

FTIMFAC [1.0]
The FTIMFAC keyword is a coe�cient multiplier of the pseudo time step which
determines the limiting time step for the implicit iteration strategy enabled by the
keyword FIMPLIC = 1.0. Under most circumstances, the pseudo time step (as opposed to
the physical time step) employed by the implicit inner iteration strategy requires some
limiting to prevent instabilities in the global time marching process. The value of
FTIMFAC is a \safety factor" of sorts by simply limiting the value of the pseudo time
step. Larger values of FIMPFAC imply more limiting, and hence improved stability
(theoretically). Under no circumstances should FTIMFAC ever be less than 1.0. Values of
between 1.0 and 10.0 are recommended.

NASA CR{206600 47

INPUT KEYWORDS

FTOTSM [0.0]
The FTOTSM keyword is used to trigger the post multi-grid smoothing algorithm. In
this scheme, the residual corrections from the multi-grid process are combined with the
�ne mesh residuals and are smoothed globally using a simple constant coe�cient version
of the implicit residual smoothing algorithm. The smoothing coe�cient is determined by
the value of the input keyword variable EPSTOT. The scheme is disabled when FTOTSM
= 0.0, and is employed when FTOTSM = 1.0. This scheme has been found to aid
stability, but can actually hinder convergence in some cases.

FTURBB [10.0]
The FTURBB keyword assigns a trigger which determines the number of iterations before
the turbulence model is activated. For laminar ow, set FTURBB to a very large number
(i.e., 99999.0) so the turbulence model is never called. For turbulent ow, the value should
be large enough (� 10) to ensure that the solution has developed adequately enough to
permit stable implementation of the turbulence model (e.g., the ow�eld should at least
exhibit the gross characteristics such as correct ow direction, some boundary layer
development) of the expected �nal ow before the turbulence model is activated.

FTURBCHT(num) [0.0]
The keyword FTURBCHT(num) sets a block speci�c trigger for the mesh block number
speci�ed by the value num to enable the body-centered mesh turbulence model described
in Figure 3.4. If FTURBCHT(num) is set to 0.0, the standard turbulence model is used
for the block speci�ed by num. If FTURBCHT(num) is set to 1.0, then the special
transition and body centered turbulence model is used for the block speci�ed by num.
The body-centered turbulence model locates the airfoil leading and trailing edges, and
utilizes the input variables XTRANSS, XTRANPS and CMUTSS, CMUTPS to
determine the natural transition point on the airfoil. This turbulence model was
developed during an analysis of surface heat transfer (where transition plays a critical
role) on a turbine vane cascade using a C-type mesh. The use of this model is
recommended whenever the mesh topology is compatible with the scheme illustrated in
Figure 3.4. Note that the \pressure" and \suction" surfaces de�ned in Figure 3.4 actually
refer to geometric orientation rather than aerodynamic function.

It should be noted that these variables will have no e�ect when FINVVI=0.0
(inviscid ow), or when either F1EQ=1.0 or F2EQ=1.0 (using the one- or two-equation
turbulence model) or when FTURBCHT=0.0 (transition model not activated).

FTURBF [0.0]
The FTURBF keyword assigns a trigger which determines the iteration number at which
the turbulence model is frozen. This trigger was added for those cases where convergence
is apparently hindered by \noise" from the turbulence model. The default value is set to
0.0 in order to prevent accidental freezing of the turbulence �eld. Caution must be
exercised when using the FTURBF variable due to the fact that the ADPAC restart �le
does not contain any turbulent viscosity data when the algebraic Baldwin-Lomax or
mixing-length turbulence model is used. If the ADPAC code is restarted from a turbulent
ow solution when the value of FTURBF is less than the current iteration level, no
turbulent quantities will be generated and the ow will exhibit laminar ow
characteristics. In general, it is safest to make this a very large number to avoid problems.

48 NASA CR{206600

INPUT KEYWORDS

FTURBI [1.0]
The FTURBI keyword assigns a trigger which determines the number of iterations
between turbulence model evaluations. For best results, this should be 1.0, which implies
that the turbulence parameters are re-evaluated at every iteration. However, this value
can be increased to reduce CPU time by re-evaluating the turbulence quantities every
FTURBI iterations at the possible expense of irregular convergence. It is recommended
not to exceed a value of 10 for FTURBI.

FUNINT [0.0]
The FUNINT keyword is used to determine the number of iterations between
instantaneous PLOT3D absolute ow �le output. For a time-dependent calculation, it is
often desirable to print out data at several intervals during the course of the solution to
examine the time-dependent nature of the ow. For steady-ow calculations, it is
normally desirable to keep FUNINT set to its default [0.0] to suppress ow �le output and
simply use the �nal output PLOT3D format �les if needed. For unsteady-ow
calculations, the value of FUNINT can be highly case dependent, and some numerical
experimentation may be required to prevent excessive output or a de�ciency in data. The
�le naming convention for the unsteady output �les is explained in Section 3.5
(case.p3fr.#). Proper selection of FDELTAT and FUNINT resulting in PLOT3D output
�les at speci�c intervals of time will likely produce the most useful results.

FUPWIND [0.0]
The FUPWIND keyword is a simple trigger to activate the upwind di�erencing scheme
(on = 1.0, o� = 0.0) available for the 2-D mesh block solver in the ADPAC code. The
upwind di�erencing scheme is a �rst-order scheme available for experimentation only, and
is not a recommended solution technique for actual ow calculations at this point.

FVTSFAC [2.5]
The FVTSFAC keyword determines the value of the viscous time step evaluation factor
used to stabilize the time-marching solution for viscous ows. This factor is used to
magnify the importance of the di�usion-related contributions to the time step evaluation
(larger values suggest larger restrictions due to di�usion related parameters). This factor
is particularly useful for meshes with rapid changes in grid spacing, and the default value
of 2.5 was prescribed somewhat arbitrarily following numerical experimentation. It is
unlikely that this value needs modi�cation for most cases.

FWALLF [1.0]
The FWALLF keyword is used to trigger the use of wall functions in the algebraic model
and one-equation turbulence model (F1EQ = 1.0), but not the two-equation model (F2EQ
= 1.0). Wall functions are normally desirable for meshes which are not highly clustered
near solid surfaces. The ADPAC code can determine when the wall function model is
necessary and will automatically disable the wall function model (even if FWALLF is
enabled) in favor of the standard turbulence model wall treatment for meshes with
acceptable near-wall spacing (y+ < 5 or roughly 0.0001 times airfoil chord for
turbomachinery applications). At this point, the wall function model is not recommended
for applications involving signi�cant heat transfer or massive ow separation.

NASA CR{206600 49

INPUT KEYWORDS

GAMMA [1.4]
The GAMMA keyword sets the value for the gas speci�c heat ratio. For most cases
involving air at moderate pressures and temperatures, a value of 1.4 is adequate. For cases
involving combustion products, this value may be quite di�erent, and should be
considered appropriately. Extreme care must be taken when post-processing a calculation
which is based on a value of GAMMA other than 1.4 as many post processors use an
assumed value of the speci�c heat ratio equal to 1.4 (PLOT3D is a common example). It
should be mentioned that the present version of the code does not permit user
speci�cation of the uid viscosity, as the formula for air is hardwired into the code.

NBLD(num)
The NBLD(num) keyword speci�es the number of blades in the mesh block numbered
num. The NBLD factor is used when calculating mass ows and forces to simulate the
entire geometry, even though only a single blade row may be actually calculated. The
speci�cation of NBLD is very important when using the one-equation Spalart-Allmaras
turbulence model (F1EQ = 1.0); the near-wall distance routine needs the information
regarding the pitch of the blades in a cylindrical setting to correctly calculate the
near-wall distance accounting for periodicity.

P3DPRT [1.0]
The P3DPRT keyword assigns a trigger which determines whether PLOT3D format
output �les are written at the end of a calculation. A value of P3DPRT = 1.0 indicates
that the output �les should be written. Conversely, a value of P3DPRT = 0.0 indicates
that the PLOT3D format output �les should not be written. The PLOT3D output �les
are useful for graphically examining the predicted ow quantities using widely available
plotting software such as PLOT3D and FAST . Occasionally, however, due to disk space
limitations or simply to speed up execution during initial runs, it may be desirable to
eliminate this output feature.

PREF [2116.22]
The PREF keyword sets the dimensional value (lbf/ft2) of the reference total pressure
used to nondimensionalize the ow�eld. For viscous ows, this value must be accurately
speci�ed in order to properly set the nondimensional ow viscosity, and the Reynolds
number. For inviscid ow predictions, this value has no real signi�cance because of the
similarity of inviscid ows with Mach number. It is very important with respect to
stability and convergence to choose an average representative value for this variable, such
that the nondimensional total pressure at any point in the ow is near a value of 1.0. An
extended discussion on the reason for this choice is given in the description of RMACH. In
general, PREF is set to the freestream or inlet ow average total pressure.

PRNO [0.7]
The PRNO keyword assigns the value of the gas Prandtl number. For air (and many
other gases) at moderate pressures and temperatures, a value of 0.7 is appropriate.

PRTNO [0.9]
The PRTNO keyword assigns the value of the gas turbulent Prandtl number. The
turbulence model in ADPAC determines the turbulent thermal conductivity via a turbulent
Prandtl number and the calculated turbulent viscosity. The recommended value is 0.9.

50 NASA CR{206600

INPUT KEYWORDS

RGAS [1716.26]
The RGAS keyword sets the dimensional value (ft-lbf/slug-�R) of the gas constant. The
default value is for atmospheric air at standard pressure and temperature. This value is
used in conjunction with GAMMA in determining the gas speci�c heats at constant
pressure and constant volume.

RMACH [0.5]
The RMACH keyword value is intended to set an initial ow Mach number. This value is
used primarily to set the initial freestream ow variables (density, pressure, temperature,
and axial velocity) for a given calculation based on a �xed Mach number. The freestream
values are used to initialize the ow�eld prior to the execution of the time-marching solver
and should be used only in the absence of a restart �le. It should be mentioned that the
initial data values are assigned based on the assumption that the nondimensional
freestream total pressure and total temperature are 1.0 (the dimensional values are the
PREF and TREF input values). This implies that it is advisable to set up all input
variables (in particular PREF and TREF) and boundary data such that the imposed inlet
and exit ow boundary conditions are compatible with the initial conditions derived from
RMACH. In addition, the value of RMACH is used in conjunction with the value of
advance ratio speci�ed by the keyword ADVR, when the rotational speed is de�ned in this
manner. In this case, the value of RMACH must be the freestream Mach number
associated with the advance ratio speci�ed by ADVR or an incorrect rotational speed will
be calculated. A common error when using the RMACH input variable is to assume that
the speci�cation of the reference Mach number will set the ow for the case of interest.
This is not true, as the boundary condition speci�cations will ultimately determine the
ow conditions.

RPM(num) [0.0]
The RPM keyword value determines the rotational speed (rev/min) of the mesh block
number speci�ed by the value num. The value of RPM is by nature a dimensional value.
Block rotational speeds are zero by default unless either a RPM or an ADVR keyword are
speci�ed. The user should be aware that if the mesh has not been correctly
non-dimensionalized, it is then possible that an incorrect value of rotational speed would
be used in the calculation (see the description of the keyword DIAM). The user should
also be aware that this value is sign speci�c, and many computational problems have been
traced to geometries which were rotating the wrong way. The proper orientation for the
RPM speci�cation is illustrated in Figure 3.6.

TREF [518.67]
The TREF keyword sets the dimensional value (�R) of the reference total temperature
used to nondimensionalize the ow�eld. For viscous ows, this value must be accurately
speci�ed in order to properly set the nondimensional ow viscosity and the Reynolds
number. This value is also important for the speci�cation of wall temperature used in the
viscous wall boundary condition (i.e., SSVI, SS2DVI). For inviscid ow predictions, this
value has no real signi�cance because of the similarity of inviscid ows with Mach number.
It is very important with respect to stability and convergence to choose an average
representative value for this variable, such that the nondimensional total temperature at
any point in the ow is near a value of 1.0. In general, TREF is set to the freestream or

NASA CR{206600 51

INPUT KEYWORDS

x

r

 RPM (+)
ADVR (+)

 RPM (−)
ADVR (−)

θ

Figure 3.6: ADPAC rotational speed orientation illustration.

inlet ow average total temperature.

VIS2 [0.500]
The VIS2 keyword de�nes the value of the second-order added dissipation term used in
the �ne mesh time-marching solver (see Appendix A). This value is a simple multiplier of
the second-order dissipation term (larger values imply more added dissipation).
Second-order dissipation is used mainly to control the solution in the vicinity of ow
discontinuities such as shock waves, but can also be important in any high gradient region.
The recommended value is 0.5, but values from 0.0 (no second-order dissipation) to 2.0
may be necessary. Any value larger than 2.0 is of questionable use, as the added
dissipation will likely dominate the solution.

VIS4 [0.015625]
The VIS4 keyword de�nes the value of the fourth-order added dissipation term used in the
�ne mesh time-marching solver (see Appendix A). This value is a simple multiplier of the
fourth-order dissipation term (larger values imply more added dissipation). Fourth order
dissipation is used mainly to provide a background dissipation to control the odd/even
point decoupling associated with centered di�erencing schemes. The recommended value
is 0.015625 (1

64), but values from 0.0 (no fourth-order dissipation) to 0.0625 (1
16) may be

necessary. Any value larger than 0.0625 is of questionable use, as the added dissipation
will likely dominate the solution.

VISCG2 [0.125]
The VISCG2 keyword controls the value of the second-order added dissipation coe�cient
for coarse mesh subiterations during the multi-grid time-marching solution process.
Coarse mesh subiterations utilize a simpler dissipation scheme than the �ne mesh
time-marching scheme, and therefore, a di�erent damping constant is required. Larger
values imply increased dissipation. The recommended value is VISCG2 = 0.125, although

52 NASA CR{206600

values from 0.0 (no dissipation) to 1.0 are possible. Values larger than 1.0 are not
recommended as the solution would then likely be dominated by the dissipation.

WBF(num) [0.0]
The WBF(num) keyword triggers whether or not to write out a body force �le for block
num. If WBF(num) is set to 1.0, the �le for block num will be written. This is valid only
for H-grids with constant axial and radial locations across the circumferential pitch
(Dawes-type).

XMOM, YMOM, ZMOM [0.0, 0.0, 0.0]
The three keywords XMOM, YMOM, and ZMOM specify the point in space about which
the six moment components are calculated in Cartesian space as shown in Figure 3.7. The
keywords are only used when the geometry is solved in the Cartesian reference frame
(FCART = 1.0).

XTRANSS, XTRANPS [0.0]
The XTRANSS and XTRANPS keywords determine the percentage of axial chord at
which transition is forced to occur for the point transition model in the ADPAC body
centered mesh turbulence model activated by the keyword FTURBCHT. This simpli�ed
transition model maintains laminar ow either until transition occurs based on the values
of CMUTPS and CMUTSS or until the percentage of axial chord indicated by
XTRANSS and XTRANPS is exceeded at which point complete transition is forced.
Separate variables are provided for the \suction side" and \pressure side", respectively, of
the airfoil in question. The transition model parameters are illustrated in Figure 3.4.
Fully turbulent (non-transitional) ows should set XTRANSS and XTRANPS to 0.0
(transition occurs at leading edge). Other values must be determined on a case by case
basis. \Natural" transition can occur based on CMUTPS and CMUTSS.

It should be noted that these variables will have no e�ect when FINVVI=0.0
(inviscid ow), or when either F1EQ=1.0 or F2EQ=1.0 (one- or two-equation turbulence
model enabled) or when FTURBCHT=0.0 (transition model not activated).

ZETARAT [0.6]
The keyword ZETARAT controls a parameter used in the eigenvalue scaling operator in
the residual smoothing algorithm (see Appendix A). The value of ZETARAT represents
the exponent the ratio of two coordinate eigenvalues and therefore large values of
ZETARAT (� 0.6) imply increased bias for meshes with large di�erences in coordinate
spacing while small values of ZETARAT (� 0.5) imply decreased bias for meshes with
large di�erences in coordinate spacing. Normally, values between 0.5 and 0.6 are
recommended. Physically, this implies that large values of ZETARAT give preference to
smoothing in a single coordinate direction (preference given to most highly clustered
coordinate).

3.7 ADPAC Boundary Data File Description

The ADPAC boundary data �le contains the user-speci�ed parameters which control the
application of boundary conditions on the multiple-block mesh during a solution. These

NASA CR{206600 53

(i,j,k)

ZMOM

x

y

z

XMOM

Y
M

O
M

Fp

Fv

∆x

∆y

∆z

A

Solid

Surfa
ce

O

Fx � delY = j~Fxj�y =
n�

~Fp + ~Fv

�
� x̂
o
�y

Fx � delZ = j~Fxj�z =
n�

~Fp + ~Fv

�
� x̂
o
�z

Fy � delX = j~Fyj�x =
n�

~Fp + ~Fv

�
� ŷ
o
�x

Fy � delZ = j~Fyj�z =
n�

~Fp + ~Fv

�
� ŷ
o
�z

Fz � delX = j~Fzj�x =
n�

~Fp + ~Fv

�
� ẑ
o
�x

Fz � delY = j~Fzj�y =
n�

~Fp + ~Fv

�
� ẑ
o
�y

Six Moment Components listed
in the ADPAC case.forces file

Figure 3.7: Location of XMOM, YMOM, and ZMOM with respect to the calculation of
moment components.

54 NASA CR{206600

Boundary condition
"patch" on a
k = constant face

Boundary condition
"patch" on a
j = constant face

Boundary condition
"patch" on an
i = constant face

ik

j

Figure 3.8: ADPAC 3-D boundary condition speci�cation.

boundary speci�cations determine the location of solid walls, inow/outow regions, and
block-to-block communication paths. Prior to a detailed discussion of the individual
boundary condition speci�cations, several boundary condition application concepts should
be explained. It is important to understand how boundary conditions are applied in the
ADPAC �nite volume solution scheme.

Finite volume solution algorithms typically employ the concept of a phantom cell to
impose boundary conditions on the external faces of a mesh block. This concept is briey
detailed in Appendix A. All ADPAC boundary condition speci�cations provide data values
for phantom cells to implement a particular mathematical boundary condition on the
mesh. It should be emphasized that the phantom cells are automatically de�ned within
the ADPAC code, and the user need not be concerned about generating �ctitious points
within the mesh to accommodate the boundary condition application procedure (mesh
points need only be generated for the actual ow domain).

Although boundary conditions are imposed at phantom cells in the numerical
solution, the boundary speci�cation is still most conveniently de�ned in terms of grid
points, not computational cells. An illustration of the boundary speci�cation method for
ADPAC is given in Figure 3.8. All boundary conditions are speci�ed in terms of the grid
points on either an i=constant, j=constant, or k=constant mesh surface. In practice,
these surfaces are typically on the outer boundaries of the mesh block, but it is also
possible to impose a boundary condition in the interior of a mesh block.

Another important aspect of the application of boundary conditions in the
ADPAC code involves the order in which boundary conditions are applied. During the
execution of the ADPAC code, all boundary conditions are applied to the various mesh
blocks in the order in which they are speci�ed in the case.boundata �le. As a result, it is
possible to overwrite a previously speci�ed boundary patch with subsequent di�erent
boundary conditions. This concept is illustrated graphically in Figure 3.9. The user must

NASA CR{206600 55

Boundary condition B applied
after boundary condition A
(part of A is overwritten)

Boundary condition
A applied first

Boundary condition C applied
after boundary condition B and A
(part of A and B are overwritten)

A A
B

A
B

C
Computational

Domain

Figure 3.9: E�ect of ordering in application of boundary conditions for the ADPAC code.

take proper precautions to prohibit accidentally overwriting a desired boundary patch as
the ADPAC code cannot distinguish the proper order for the user. For example,
overwriting a communication boundary condition (PATCH) with a solid no-slip surface
boundary condition (SSVI) will result in the incorrect viscosity data at the solid boundary.

During code execution, the boundary data �le is read one line at a time as a
character string, and each string is parsed sequentially to determine the speci�c program
action in each case. The boundary data �le utilizes a keyword input format, such that any
line which does not contain a recognizable keyword is treated as a comment line.
Therefore, the user may place any number of comments in the �le (so long as the line does
not contain a keyword input string in the form described below), and code execution is
unaltered. All boundary data �le lines are echoed to the standard output, and the program
response to each line is listed when a speci�c action is taken. A line in the boundary data
�le can also be changed to a comment by inserting a # character in the �rst column.

All keyword input lines are given in the format listed in Figure 3.10. The actual
speci�cation in the boundary data �le may be free format, as long as the individual
parameter speci�cations are given in the correct order and are separated by one or more
blank spaces. All boundary speci�cations begin with a line containing 19 variables as
outlined by the labels in Figure 3.10. This �gure also shows the relationship of the
ordered variables to the mesh surface they de�ne (A or B). A description of the function
of each of the variables in the boundary speci�cation line is given in the proper order in
the section below:

Boundary Speci�cation Line Variables Descriptions

BCTYPE The �rst variable, BCTYPE, is a character string de�ning the type of
boundary condition to be applied to a given mesh block. BCTYPE
must correspond to one of the reserved boundary condition keywords
de�ned later in this section to be a proper boundary speci�cation. If
BCTYPE is not one of the reserved names, then the boundary
speci�cation line is ignored.

LBLOCK1 The variable LBLOCK1 is an integer de�ning the grid block number
to which the boundary condition implied by BCTYPE is applied.

56 NASA CR{206600

B
C

T
Y

P
E

LB
LO

C
K

1
LB

LO
C

K
2

LF
A

C
E

1
LF

A
C

E
2

LD
IR

1
LD

IR
2

LS
P

E
C

1
LS

P
E

C
2

L1
LI

M
L2

LI
M

M
1L

IM
1

M
1L

IM
2

N
1L

IM
1

N
1L

IM
2

M
2L

IM
1

M
2L

IM
2

N
2L

IM
1

N
2L

IM
2

PATCH 1 2 I I P M J K 1 33 1 17 1 25 33 49 1 25

A A A A A A A AB B B B B B B BA
B

A
B

A

B

First Surface in PATCH Statement

Second Surface in PATCH Statement

Figure 3.10: ADPAC boundary data �le speci�cation format.

Naturally, this implies 1 � LBLOCK1 � NBLKS, where NBLKS
represents the last mesh block number, unless FRDMUL = 1.0 and
the coarse mesh boundary conditions are read in.

LBLOCK2 The variable LBLOCK2 is an integer de�ning the grid block number
from which the boundary condition data implied by BCTYPE and
applied to mesh block LBLOCK1 is obtained. In some cases, a
boundary speci�cation may involve more than one block (i.e.,
PATCH), and the LBLOCK2 variable is provided for this purpose. If
the boundary speci�cation only involves a single block, then set
LBLOCK2 = LBLOCK1.

LFACE1 The variable LFACE1 is a single character (I, J, or K) specifying the
grid plane (i, j, or k constant, respectively) to which the boundary
condition is applied in block LBLOCK1, based on the method by
which boundary conditions are implemented in the �nite-volume
solution scheme.

LFACE2 The variable LFACE2 is a single character (I, J, or K) specifying the
grid plane (i, j, or k constant, respectively) from which the boundary
condition data is derived in block LBLOCK2. Naturally, this variable
is only useful for boundary speci�cations involving more than one
block; if only one block is involved, simply set LFACE2 = LFACE1.

LDIR1 The variable LDIR1 is a single character (P or M) specifying the
direction (P=plus, M=minus) along the LDIR1 coordinate in
LBLOCK1 which is from the boundary surface patch directed towards
the interior of the ow region. The speci�cation of this variable is
normally automatic when the boundary speci�cation is applied to the
external surface of a grid block (e.g., LDIR1 = P when L1LIM = 1,
and LDIR1 = M when L1LIM = imax, jmax, or kmax). The intent is to
specify which side of the boundary surface plane the interior
computational cells (non-phantom cells) lie on when the boundary
condition is applied to a grid block.

NASA CR{206600 57

LDIR2 The variable LDIR2 is a single character (P or M) specifying the
direction (P=plus, M=minus) along the LDIR2 coordinate in
LBLOCK2 which is towards the interior ow region from the
boundary surface patch. This variable is only used in boundary
speci�cations cases involving more than one mesh block. See notes on
LDIR1 for details. If the boundary speci�cation involves only a single
mesh block, then simply set LDIR2 = LDIR1.

LSPEC1 The variable LSPEC1 is a single character (I, J, K, L, or H) which
implies some special information about the boundary condition
speci�cation. This parameter is boundary condition dependent. For
boundary conditions involving more than one mesh block, it is
possible that the connection between blocks may involve connections
between di�erent grid surfaces, and that the indices in block
LBLOCK2 correspond to a di�erent coordinate in block LBLOCK1.
See the descriptions of M2LIM and N2LIM below and the boundary
conditions PATCH and EXITT for additional details and speci�c
examples.

LSPEC2 The variable LSPEC2 is a single character (I, J, K, L, or H) which
implies some special information about the boundary condition
speci�cation. See the notes on LSPEC1 above.

L1LIM The variable L1LIM is an integer specifying the index of the constant
mesh face determined by LFACE1 to which the boundary condition
should be applied in block LBLOCK1.

L2LIM The variable L2LIM is an integer specifying the index of the constant
mesh face determined by LFACE2 from which the boundary condition
data is derived in block LBLOCK2.

M1LIM1 The variable M1LIM1 is an integer representing the initial index of
the �rst remaining grid coordinate direction to which the boundary
condition is applied in block LBLOCK1. Since the boundary
speci�cation applies to either an i, j, k constant surface, the variables
M1LIM1, M1LIM2, N1LIM1, and N1LIM2 determine the extent of
the patch in the remaining coordinate directions. The remaining
coordinate directions for block LBLOCK1 are speci�ed in the natural
order. The indices speci�ed in M1LIM1 and M1LIM2 must be given
in increasing order (M1LIM1 < M1LIM2).

Natural order is de�ned as follows: if LFACE1=I, then the variables
M1LIM1 and M1LIM2 refer to the extent in the j direction and the
variables N1LIM1 and N1LIM2 refer to the extent in the k direction.
If LFACE1=J, then the variables M1LIM1 and M1LIM2 refer to the
extent in the i direction and the variables N1LIM1 and N1LIM2 refer
to the extent in the k direction. If LFACE1=K, then the variables
M1LIM1 and M1LIM2 refer to the extent in the i direction and the
variables N1LIM1 and N1LIM2 refer to the extent in the j direction.

M1LIM2 The variable M1LIM2 is an integer representing the �nal index of the

58 NASA CR{206600

�rst remaining grid coordinate direction to which the boundary
condition is applied in block LBLOCK1. Since the boundary
speci�cation applies to either an i, j, or k constant surface, the
variables M1LIM1, M1LIM2, N1LIM1, and N1LIM2 determine the
extent of the patch in the remaining coordinate directions. The
remaining coordinate directions for block LBLOCK1 are speci�ed in
the natural order. The indices speci�ed in M1LIM1 and M1LIM2
must be given in increasing order.

N1LIM1 The variable N1LIM1 is an integer representing the initial index of the
second remaining grid coordinate direction to which the boundary
condition is applied in block LBLOCK1. Since the boundary
speci�cation applies to either an i, j, or k constant surface, the
variables M1LIM1, M1LIM2, N1LIM1, and N1LIM2 determine the
extent of the patch in the remaining coordinate directions. The
remaining coordinate directions for block LBLOCK1 are speci�ed in
the natural order. The indices speci�ed in N1LIM1 and N1LIM2 must
be given in increasing order. For boundaries on 2-D mesh blocks, this
must always be 1.

N1LIM2 The variable N1LIM2 is an integer representing the �nal index of the
second remaining grid coordinate direction to which the boundary
condition is applied in block LBLOCK1. Since the boundary
speci�cation applies to either an i, j, or k constant surface, the
variables M1LIM1, M1LIM2, N1LIM1, and N1LIM2 determine the
extent of the patch in the remaining coordinate directions. The
remaining coordinate directions for block LBLOCK1 are speci�ed in
the natural order. The indices speci�ed in N1LIM1 and N1LIM2 must
be given in increasing order. For boundaries on 2-D mesh blocks, this
must always be 2.

M2LIM1 The variable M2LIM1 is an integer representing the initial index of
the grid coordinate direction in block LBLOCK2 corresponding to the
�rst remaining coordinate in block LBLOCK1. For boundary
conditions involving more than one mesh block, it is possible that the
connection between blocks may involve connections between di�erent
grid surfaces, and that the indices in block LBLOCK2 correspond to a
di�erent coordinate in block LBLOCK1. The variables M2LIM1 and
M2LIM2 control the indices in the LSPEC1 direction in block
LBLOCK2 which correspond to the indices determined by M1LIM1
and M1LIM2 in block LBLOCK1. The user should note that it is
possible for the M2 limits to be in decreasing order. If only a single
mesh block is involved in the boundary speci�cation, set M2LIM1 =
M1LIM1.

M2LIM2 The variable M2LIM2 is an integer representing the �nal index of the
grid coordinate direction in block LBLOCK2 corresponding to the �rst
remaining coordinate in block LBLOCK1. The variables M2LIM1 and
M2LIM2 control the indices in the LSPEC1 direction in block

NASA CR{206600 59

LBLOCK2 which correspond to the indices determined by M1LIM1
and M1LIM2 in block LBLOCK1. The user should note that it is
possible for the M2 limits to be in decreasing order. If only a single
mesh block is involved in the boundary speci�cation, set M2LIM2 =
M1LIM2.

N2LIM1 The variable N2LIM1 is an integer representing the initial index of the
grid coordinate direction in block LBLOCK2 corresponding to the
second remaining coordinate in block LBLOCK1. The variables
N2LIM1 and N2LIM2 control the indices in the LSPEC2 direction in
block LBLOCK2 which correspond to the indices determined by
N1LIM1 and N1LIM2 in block LBLOCK1. The user should note that
it is possible for the N2 limits to be in decreasing order. If only a
single mesh block is involved in the boundary speci�cation, set
N2LIM1 = N1LIM1. For boundary data on 2-D mesh blocks, this
must always be 1.

N2LIM2 The variable N2LIM2 is an integer representing the �nal index of the
grid coordinate direction in block LBLOCK2 corresponding to the
second remaining coordinate in block LBLOCK1. The variables
N2LIM1 and N2LIM2 control the indices in the LSPEC2 direction in
block LBLOCK2 which correspond to the indices determined by
N1LIM1 and N1LIM2 in block LBLOCK1. The user should note that
it is possible for the N2 limits to be in decreasing order. If only a
single mesh block is involved in the boundary speci�cation, set
N2LIM2 = N1LIM2. For boundary data on 2-D mesh blocks, this
must always be 2.

Some boundary condition speci�cations require additional data beyond that
incorporated in the boundary speci�cation line. In these cases, described in detail for the
speci�c boundary types later in this section, the additional data is included immediately
after the boundary speci�cation line. A sample ADPAC boundary data �le containing
several keywords is listed in Figure 3.11 followed by the detailed descriptions of all the
boundary conditions available in ADPAC .

60 NASA CR{206600

THIS IS A COMMENT LINE

#

This is also a comment line since there are no keywords.

#

B L L L L L L L L L L M M N N M M N N C

C B B F F D D S S 1 2 1 1 1 1 2 2 2 2 O

T L L A A I I P P L L L L L L L L L L M

Y O O C C R R E E I I I I I I I I I I M

P C C E E 1 2 C C M M M M M M M M M M E

E K K 1 2 1 2 1 2 1 2 1 2 1 2 N

1 2 T

#------- -- -- -- -- -- -- -- -- --- --- --- --- --- --- --- --- --- --- ---------

#

#---> The next two lines do the periodic boundary at K=1, K=17

#

PATCH 1 1 K K P M I J 1 17 1 49 1 17 1 49 1 17 K=1

PATCH 1 1 K K M P I J 17 1 1 49 1 17 1 49 1 17 K=KL

#

#---> Hub surface is at J=1

#

SSIN 1 1 J J P P S S 1 1 1 49 1 17 1 49 1 17 Hub

#

#---> Next two lines define the blade surfaces at K=1, K=17

#

SSIN 1 1 K K P P S S 1 1 17 33 1 17 17 33 1 17 K=1

SSIN 1 1 K K M M S S 17 17 17 33 1 17 17 33 1 17 K=KL

#

#---> Set the inflow data at I=1

#

INLETT 1 1 I I P P S S 1 1 1 17 1 17 1 17 1 17 INL

NDATA

3

RAD PTOT TTOT BETAR BETAT CHI

0.100000 1.000000 1.000000 0.000000 0.000000 1.00000

0.300000 1.000000 1.000000 0.000000 0.000000 1.00000

0.500000 1.000000 1.000000 0.000000 0.000000 1.00000

#

#---> Set the exit flow data at I=49 (Note that the exit static pressure

is set here: this determines the blade loading and the flow rate

#

EXITT 1 1 I I M M H H 49 49 1 17 1 17 1 17 1 17 INL

PEXIT

1.200000

#

#---> Define the case surface at J=17

#

SSIN 1 1 J J M M S S 17 17 1 49 1 17 1 49 1 17 Case

#

ENDDATA

The code will never reach this line due to the ENDDATA above.

Figure 3.11: Sample ADPAC boundary condition data �le speci�cation (case.boundata).

NASA CR{206600 61

BOUNDATA KEYWORDS

BCINT1

BCINT1 Type Non-Contiguous Mesh Block Interface
Patching Scheme

i

Non−Contiguous Mesh Block Interface Along
Wake Cut Line Can Employ a BCINT1 Specification
(illustrated in Boundary Data File Format
statements below)

Mesh Block #1
(193x25x1)

Application
The BCINT1 speci�cation is used in any application involving neighboring mesh blocks
with a non-contiguous grid line to grid line interface in one coordinate direction. The
interface must be contiguous in the other direction. For interfaces where both indices are
misaligned the boundary condition PINT should be employed. BCINT1 patches one block
to one other block by interpolation along the non-contiguous index.

The example graphic above illustrates a two-dimensional mesh system used to
predict the ow through a turbine vane passage. The C-type mesh utilizes a
noncontiguous wake cut line as shown in the trailing edge detail. The BCINT1
speci�cation is applied along either side of the wake cut line to permit communication of
ow variables across the noncontiguous mesh interface. Here, the interpolation direction is
i, and part of the block is patched to itself. Note that the i index increases in di�erent
directions at the wake cut line. BCINT1 can handle interpolation along any index,
regardless of the orientation of the mating surface.

62 NASA CR{206600

BOUNDATA KEYWORDS

Boundary Data File Format
The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the BCINT1 boundary condition are given below:

BCINT1 1 1 J J P P L L 1 1 1 33 1 2 193 177 1 2

IDIRNT1 IDIRNT2

I I

ISHFTDR DSHIFT

2 0.0

BCINT1 1 1 J J P P L L 1 1 177 193 1 2 33 1 1 2

IDIRNT1 IDIRNT2

I I

ISHFTDR DSHIFT

2 0.0

Note that a complete BCINT1 speci�cation generally requires two BCINT1
statement lines in the boundary data �le. In the example above, the �rst speci�cation
provides the inter-block communication for one side of the C-grid wake cut, while the
second speci�cation provides the communication for the other side of the C-grid wake cut.
It is a common error to under-specify a BCINT1 boundary by only providing a single line
per interface.

Description
The BCINT1 boundary statement provides a means for block-to-block communication for
cases involving neighboring mesh boundaries which share a common surface, but are
non-contiguous in one grid index. BCINT1 can be applied to either stationary or rotating
block interfaces, but the results are physically correct only if both blocks are rotating at
the same speed. (The BCPRR speci�cation should be used for cases with relatively
rotating blocks.) A proper BCINT1 boundary is speci�ed much like a PATCH boundary.
The LFACE1 and LFACE2 determine which faces are mated together. BCINT1 also requires
the speci�cation of additional information. The second line in a BCINT1 speci�cation is a
comment line, normally labeling the variables INTDIR1 and INTDIR2. The third line
de�nes the variables INTDIR1 and INTDIR2 as either I, J, or K, depending on the direction
of interpolation for the receiving and sending blocks, respectively. One mesh restriction to
note is that BCINT1 allows only one interpolation direction for each side of the interface
(e.g., the mesh must align in the other direction de�ning the boundary condition area).
For mesh interfaces where neither direction is aligned, see PINT.

The fourth line is a comment line normally labeling the variables ISHFTDR and
DSHIFT. The �fth line de�nes the values for the variables ISHFTDR and DSHIFT. These
variables provide a mechanism for shifting the boundary in one of the three coordinate
directions (x, y, z for Cartesian ows, or x, r, � for cylindrical ows). The value of
ISHFTDR identi�es the variable to be shifted (1-x, 2-y, 3-z for Cartesian and 1-x, 2-r, 3-�
for cylindrical) and the value of DSHIFT is the increment by which the sending boundary
is shifted (normalized in the same manner as the mesh coordinates) to mate to the
receiving boundary. BCINT1 expects that the two sides of the interface lie on a common

NASA CR{206600 63

BOUNDATA KEYWORDS

or parallel physical surface, but the grid itself may not have both sides of the interface in
the same physical location. The most common use for this feature is a noncontiguous
periodic boundary for a single passage turbomachinery blade row solution.

For the case of a non-contiguous periodic boundary in a turbine blade row solution,
for example, ISHFTDR would be 3 (shift in the � direction) and the amount of the shift
de�ned by DSHIFT would be the circumferential spacing of the blade rows in radians. The
ISHFTDR and DSHIFT variables are provided to allow the user to temporarily shift the
physical location of the \sending" blocks to the \receiving" blocks physical location. The
blocks are assumed to be contiguous in the remaining index. The M2LIM or N2LIM variables
are speci�ed much as they would be for a PATCH speci�cation. The exception is that the
number of points spanned by the limits in the direction of interpolation need not be equal.

The search routine which determines the interpolation stencil assumes that the
mating grid lines are piecewise linear approximations to the same curve in the
interpolation direction. A global search is performed for the proper mating cell of the �rst
index. The closest cell to the point of interest is taken as the mating cell. A localized
search is performed for the mating cells of the remaining points. The local search starts at
the mating cell of the preceding point and searches along the mating boundary until the
mating cell containing the new point is found. In the event that the mating cell is not
found before the upper limit is reached in the mating block, the search continues from the
lower limit in the mating block. This implies two things: the physical domain of the
interpolation must be the same in the two blocks, and the domain is assumed to be
periodic if the search routine goes past an endpoint.

Restrictions/Limitations
The BCINT1 boundary speci�cation is restricted to mesh interfaces which when shifted
according to ISHFTDR and DSHIFT lie on a common surface (no signi�cant overlap).

Generally, endpoints of the interpolated region in the two blocks should be
coincident. There is at least one exception to this rule based on the above description of
the search routine. In the case of concentric O-grids, the endpoints of the two blocks may
be misaligned as shown in the �gure below. The interpolation routine will �nd the
appropriate stencil for each point because the grids are periodic.

64 NASA CR{206600

BOUNDATA KEYWORDS

Mesh Block 1

i = 1

Mesh Block 2

i = 1

i

j

The COARSEN program cannot properly handle subdivision of mesh boundaries involving
a BCINT1 or BCINTM speci�cation.

The BCINT1 condition reduces to a PATCH condition if the mating blocks are
actually contiguous. However, due to the linear interpolation used in BCINT1, the scheme
does not maintain either global or local conservation of ow variables across a
non-contiguous mesh interface. Also, there is no dissipation across a BCINT1 boundary
condition, but there is for a PATCH boundary condition (e.g., solutions may di�er).

Common Errors

� Failure to provide 2 BCINT1 statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,
M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not correctly
de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Incorrectly speci�ed index for the interpolation direction for LBLOCK1 or LBLOCK2.

� Attempt to use BCINT1 for a boundary which has 2 misaligned coordinates (see
PINT).

� Attempt to use BCINT1 for boundaries which are not monotonic along the
interpolated index.

� Attempt to use COARSEN for a problem involving a BCINT1 boundary
speci�cation.

NASA CR{206600 65

BOUNDATA KEYWORDS

BCINTM

BCINTM Type Non-Contiguous Mesh Block Interface
Patching Scheme

j

i

Block 1
(5 x 5)

Block 2
(9 x 3)

Block 3
(6 x 4)

Block 4
(6 x 3)

Block 5
(7 x 4)

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

Multiblock Non−Contiguous Interface

Non−contiguous mesh block interface involving multiple blocks
requires a BCINTM specification (illustrated in boundary data file
format statements below

Application
The BCINTM speci�cation is used in any application involving neighboring mesh blocks
with a non-contiguous mesh interface in one coordinate direction. The interface must be
contiguous in the remaining coordinate direction. BCINTM provides a mechanism
whereby noncontiguous boundaries involving groups of blocks may be coupled to other
groups of blocks by interpolation along the non-contiguous index. BCINTM is a
multi-block version of BCINT1.

The example graphic above illustrates a two-dimensional mesh system used to
predict the ow through a stepped duct passage. The grid was constructed with a
non-contiguous interface between the various blocks on the top and bottom of the duct.
The BCINTM speci�cation is applied along either side of the interface to permit
communication of ow variables along the interface. Here, the interpolation direction is
the i coordinate direction.

Boundary Data File Format
The boundary data �le speci�cations for the mesh interface indicated in the illustrative

66 NASA CR{206600

BOUNDATA KEYWORDS

graphic for the BCINTM boundary condition are given below:

BCINTM 1 3 J J P M I K 1 4 1 5 1 1 1 5 1 1

INTDIR1 INTDIR2 - DIRECTION OF INTERPOLATION

I I

ISHFTDR DSHIFT

2 0.0

NBLINT2 - NUMBER OF LBLOCK2 BLOCKS

3

NBLDAT LFACE2 LDIR2 L2LIM M2LIM1 M2LIM2 N2LIM1 N2LIM2

3 J M 4 1 6 1 1

4 J M 3 1 6 1 1

5 J M 4 1 7 1 1

NBLINT1 - NUMBER OF LBLOCK1 BLOCKS

2

LBLK1RR LFACE1 LDIR1 L1LIM M1LIM1 M1LIM2 N1LIM1 N1LIM2

1 J P 1 1 5 1 1

2 J P 1 1 9 1 1

BCINTM 3 1 J J M P I K 4 1 1 5 1 1 1 5 1 1

INTDIR1 INTDIR2 - DIRECTION OF INTERPOLATION

I I

ISHFTDR DSHIFT

2 0.0

NBLINT2 - NUMBER OF LBLOCK2 BLOCKS

2

NBLDAT LFACE2 LDIR2 L2LIM M2LIM1 M2LIM2 N2LIM1 N2LIM2

1 J P 1 1 5 1 1

2 J P 1 1 9 1 1

NBLINT1 - NUMBER OF LBLOCK1 BLOCKS

3

LBLK1RR LFACE1 LDIR1 L1LIM M1LIM1 M1LIM2 N1LIM1 N1LIM2

3 J M 4 1 6 1 1

4 J M 3 1 6 1 1

5 J M 4 1 7 1 1

Note that a complete BCINTM speci�cation generally requires two BCINTM
statement lines in the boundary data �le. In the example above, the �rst speci�cation
provides the inter-block communication for the upper blocks along the interface, while the
second speci�cation provides the communication for the lower blocks along the interface.
It is a common error to under-specify a BCINTM boundary by only providing a single
line per interface.

Description
The BCINTM boundary statement provides a means for block-to-block communication
for cases involving neighboring mesh boundaries which share a common surface, but are

NASA CR{206600 67

BOUNDATA KEYWORDS

non-contiguous in one grid index. A proper BCINTM boundary is speci�ed much like a
BCINT1 boundary, except that all of the blocks involved with a particular interface are
speci�ed in a table on both sides of the interface. A large amount of additional data is
required for each BCINTM speci�cation.

In the example application, a noncontiguous mesh block interface lies between
blocks 1, 2 and blocks 3, 4, 5. A single pair of BCINTM speci�cations is all that is
required to completely couple the mesh blocks along this interface, in spite of the fact that
5 mesh blocks are involved in the overall boundary de�nition. The key to this compact
speci�cation is that each BCINTM speci�cation includes tables of data which specify
which blocks lie along the receiving side of the interface (where the boundary data is
being applied) and which blocks lie along the sending side of the interface (where the
boundary data is derived).

Immediately following the BCINTM boundary speci�cation line is a series of
multi-line segments which de�ne the details of the boundary coupling. The �rst segment
consists of 4 lines, and describes some general characteristics of the interpolation along the
noncontiguous boundary. The second segment is the table describing the \sending" blocks
from which the boundary data is extracted. The third segment is a table describing the
\receiving" blocks where the boundary data is eventually interpolated and applied.

The second line in a BCINTM speci�cation is a comment line, normally labeling the
variables INTDIR1 and INTDIR2. The third line de�nes the variables INTDIR1 and INTDIR2

as either I, J , or K, depending on the direction of interpolation for the receiving and
sending blocks, respectively. One mesh restriction to note is that BCINTM allows only one
interpolation direction for each side of the interface. The fourth line is a comment line
normally labeling the variables ISHFTDR and DSHIFT. The �fth line de�nes the values for
the variables ISHFTDR and DSHIFT. These variables provide a mechanism for shifting the
boundary in one of the three coordinate directions (x; y; z for Cartesian ows, or x; r; � for
cylindrical ows). Refer to BCINT1 for descriptions on specifying ISHFTDR and DSHIFT.

The sixth line in the speci�cation is a comment normally labeling the variable
NBLINT2, and the seventh line speci�es the number of blocks associated with the LBLOCK2
side of the interface (the \sending" blocks). The eighth line is again a comment normally
labeling the variables NBLDAT, LFACE2, LDIR2, L2LIM, M2LIM1, M2LIM2, N2LIM1, and
N2LIM2. The next NBLINT2 lines de�ne the table containing the limits, directions, and
faces for each of the LBLOCK2 blocks. For each block in this table, LFACE2 de�nes the
coordinate face upon which the interface lies (I, J, or K), and LDIR2 de�nes the direction
(P for plus, or M for minus). L2LIM de�nes the value of the LFACE2 coordinate upon which
the surface is located, and M2LIM1, M2LIM2, and N2LIM1, and N2LIM2 de�ne the extent of
the remaining coordinates for each of the NBLINT2 blocks in their \natural" order.

Following the table for the LBLOCK2 side of the interface, there is a comment line
normally labeling the variable NBLINT1, followed by a line specifying the number of blocks
on the LBLOCK1 side of the interface. Next a comment line labeling the variables L1LIM,
M1LIM1, M1LIM2, N1LIM1, and N1LIM2 is given. Finally, a table consisting of NBLINT1 lines
de�ning the LBLOCK1 side (\receiving" blocks) information similar to the LBLOCK2
(\sending" blocks) table is speci�ed.

BCINTM creates a single interpolation stencil from all of the blocks in the LBLOCK2

68 NASA CR{206600

BOUNDATA KEYWORDS

table. This stencil must be monotonic in the INTDIR2 direction. Thus, the blocks in the
LBLOCK2 must be speci�ed in the order they occur physically, and the limits must be
speci�ed so that they form a continuous line. The block numbers and extents identi�ed in
the �rst line of the BCINTM speci�cation should match the �rst entry in each of the
respective LBLOCK tables.

As with BCINT1, the search routine which determines the interpolation stencil
assumes that the mating grid lines are piecewise linear approximations to the same curve
in the interpolation direction. Additional details of the search algorithm are included with
BCINT1.

Restrictions/Limitations
The BCINTM boundary speci�cation is restricted to mesh interfaces which lie on a
common surface (no signi�cant overlap). Generally, endpoints of the interpolated region in
the two blocks should be coincident. As with BCINT1, there is at least one exception to
this rule based on the above description of the search routine. In the case of concentric
O-grids, the endpoints of the two blocks may be misaligned (see the BCINT1 description
for details). The interpolation routine will �nd the appropriate stencil for each point
because the grids are periodic.

The COARSEN program cannot properly handle subdivision of mesh boundaries
involving either a BCINT1 or BCINTM speci�cation. The BCINTM condition reduces to
a PATCH condition if the mating blocks are actually contiguous. However, due to the
linear interpolation used in BCINTM, the scheme does not maintain either global or local
conservation of ow variables across a non-contiguous mesh interface. The BCINTM
condition is the only non-contiguous patching routine for multiple blocks and will run in
either serial or parallel ADPAC calculations.

Common Errors

� Failure to provide 2 BCINTM statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,
M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not correctly
de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Incorrectly speci�ed index for the interpolation direction for LBLOCK1 or LBLOCK2.

� Attempt to use BCINTM for a boundary which has 2 misaligned coordinates.

� Attempt to use BCINTM for boundaries which are not monotonic along the
interpolated index.

� Incorrect ordering of the LBLOCK1 or LBLOCK2 table of data.

� Attempt to use BCINTM for interfaces with multiple interpolation directions on the
same side of the interface.

� Attempt to use BCINTM for interfaces with multiple LFACE or LDIR requirements in
the LBLOCK1 table of data.

NASA CR{206600 69

BOUNDATA KEYWORDS

� Attempt to use COARSEN for a problem involving a BCINTM boundary
speci�cation.

70 NASA CR{206600

BOUNDATA KEYWORDS

BCPRM

Boundary Condition Procedure for Patched Relatively
Rotating Mesh Blocks with Multiple Speci�cations

Mesh Block #1
(81x6x7)

Mesh Block #3
(81x6x7)

Relatively Rotating Mesh Block Interface Between
Grids in Adjacent Blade Rows Can Employ a BCPRM Specification
(illustrated in Boundary Data File Format
statements below)

Mesh Block #2
(81x6x7)

Mesh Block #4
(81x6x7)

Mesh Block #5
(81x6x7)

i

k

j

Application
The BCPRM speci�cation is used in application involving neighboring relatively rotating
mesh blocks, such as in rotor/stator interaction problems.

Boundary Data File Format
The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the BCPRM boundary condition and a simple outline of the mesh topography
are given below. Note that blocks 1 and 2 require multiple BCPRM entries in the data
tables due to the location of the O-grid cut line. The topography below depicts a multiple
passage 3-D O-grid system for a turbine stage.

BCPRM 1 3 K K M M I J 7 7 1 6 1 6 36 46 1 6

THPER

0.41887903

NASA CR{206600 71

BOUNDATA KEYWORDS

NBCPRR - NUMBER OF BLOCKS IN LBLOCK2 TABLE OF BCPRM SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

NRRDAT - NUMBER OF BLOCKS IN LBLOCK1 TABLE OF BCPRM SPECIFICATION

4

LBLOCK1B LFACE1B LDIR1B L1LIMB M1LIM1B M1LIM2B N1LIM1B N1LIM2B

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

BCPRM 3 1 K K M M I J 7 7 36 46 1 6 6 1 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN LBLOCK2 TABLE OF BCPRM SPECIFICATION

4

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

NRRDAT - NUMBER OF BLOCKS IN LBLOCK1 TABLE OF BCPRM SPECIFICATION

3

LBLOCK1B LFACE1B LDIR1B L1LIMB M1LIM1B M1LIM2B N1LIM1B N1LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

Note that a complete BCPRM speci�cation generally requires at least two BCPRM
statement lines in the boundary data �le. In the example above, the �rst speci�cation
provides the inter-block communication for the meshes representing blade row 1 from the
meshes representing blade row 2, and the second speci�cation provides the communication
for the meshes representing blade row 2 from the meshes representing blade row 1. It is a
common error to under-specify a BCPRM boundary by only providing a single line per
interface.

Description
The BCPRM statement is an extension of the BCPRR statement to include the
speci�cation of multiple LBLOCK1 patches. As with BCPRR, the BCPRM statement
speci�es that a time-space interpolation utilizing data from several neighboring mesh
blocks is to be performed to determine the boundary data for the LBLOCK1 patches. See
the discussion of BCPRR for details about specifying the LBLOCK2 table of data and
restrictions on the use of BCPRM.

72 NASA CR{206600

BOUNDATA KEYWORDS

BCPRM di�ers from BCPRR only in the following way: an additional table of
values allows multiple LBLOCK1 patches to be speci�ed. One advantage of BCPRM is
clearly visible in the above example: only two boundary speci�cations are required to
patch the two blade rows together, compared to seven speci�cations using BCPRR.
Another, less obvious advantage is that BCPRM executes much faster than BCPRR in a
parallel computing environment. Any BCPRM speci�cation can be equally represented as
a series of BCPRR speci�cations.

The additional table of data associated with the LBLOCK1 patches in a BCPRM
statement is essentially the same as the table for the LBLOCK2 patches (see BCPRR for
additional details). A comment line is followed by a line containing the number of patches
in the LBLOCK1 row. Another comment line is followed by the speci�cation of the limits on
each LBLOCK1 patch. One restriction on the use of BCPRM is that all of the LBLOCK1
patches must share a common LFACE and LDIR. This requirement can be met by the use of
multiple BCPRM or BCPRR speci�cations.

It should be noted that BCPRM is limited to similarly oriented row 1 blocks. In
particular, the face and direction of all blocks in row 1 are taken to be the same as those
speci�ed for LBLOCK1. BCPRR may be used in cases requiring more generality.

Restrictions/Limitations
The BCPRM boundary speci�cation is restricted to mesh interfaces which lie on a
common surface (no signi�cant overlap), and have common axial and radial mesh
coordinates. The mesh must satisfy the coordinate restrictions listed in the table above.
The LBLOCK1 table of patches must share a common face and direction as noted above.
The BCPRM procedure is only applicable to 3-D mesh systems.

Common Errors

� Failure to provide 2 BCPRM statements for each interface

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,
M1LIM2, N1LIM1, N1LIM2, M2LIM1B, M2LIM2B, N2LIM1B, N2LIM2B do not
correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2B)

� Attempt to use BCPRM on a 2-D mesh block.

� Attempt to use BCPRM at an interface between two Cartesian solution meshes.

� Meshes do not satisfy coordinate restrictions listed above.

� Meshes have dissimilar axial and radial coordinates at the interface.

� Neighboring blade row 1 segments not listed in increasing theta coordinate.

� Application of BCPRM to mesh interfaces which do not share a common surface or
which have excess overlap.

NASA CR{206600 73

BOUNDATA KEYWORDS

BCPRR

Boundary Condition Procedure for Patched Relatively
Rotating Mesh Blocks

Mesh Block #1
(81x6x7)

Mesh Block #3
(81x6x7)

Relatively Rotating Mesh Block Interface Between
Grids in Adjacent Blade Rows Requires a BCPRR Specification
(illustrated in Boundary Data File Format
statements below)

Mesh Block #2
(81x6x7)

Mesh Block #4
(81x6x7)

Mesh Block #5
(81x6x7)

i

k

j

Application
The BCPRR speci�cation is used in application involving neighboring relatively rotating
mesh blocks, such as in rotor/stator interaction problems.

Boundary Data File Format
The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the BCPRR boundary condition and a simple outline of the mesh topography
are given below. Note that blocks 1 and 2 require multiple BCPRR speci�cations due to
the location of the O-grid cut line.

BCPRR 1 3 K K M M I J 7 7 1 6 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

74 NASA CR{206600

BOUNDATA KEYWORDS

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

BCPRR 1 3 K K M M I J 7 7 76 81 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

BCPRR 2 3 K K M M I J 7 7 1 6 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

BCPRR 2 3 K K M M I J 7 7 76 81 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

BCPRR 3 1 K K M M I J 7 7 36 46 1 6 6 1 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

4

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

BCPRR 4 1 K K M M I J 7 7 36 46 1 6 6 1 1 6

NASA CR{206600 75

BOUNDATA KEYWORDS

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

4

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

BCPRR 5 1 K K M M I J 7 7 36 46 1 6 6 1 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

4

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

Note that a complete BCPRR speci�cation generally requires at least two BCPRR
statement lines in the boundary data �le. In the example above, the �rst four
speci�cations provide the inter-block communication for the meshes representing blade
row 1 from the meshes representing blade row 2, and the �nal three speci�cations provide
the communication for the meshes representing blade row 2 from the meshes representing
blade row 1. It is a common error to under-specify a BCPRR boundary by only providing
a single line per interface.

Description
The BCPRR statement speci�es that a time-space interpolation utilizing data from
several neighboring mesh blocks is to be performed to determine the boundary data for
block LBLOCK1. This time-space interpolation provides the computational means of
performing time-dependent predictions of the ow through multiple blade row
turbomachines. In order to perform this type of calculation, several conditions must be
satis�ed. For calculations involving blade rows with dissimilar blade counts, it is necessary
to model several blade passages per blade row. The number of blade passages modeled
should be chosen such that the overall circumferential span of each blade row is identical.
This restriction implies that the blade counts should be reducible to simple integer ratios
(1:2, 3:4, etc.) to avoid the need for modeling an excessive number of blade passages.

In the illustrative graphic above, if we seek a solution for a single stage
turbomachine involving two blade rows with blade counts of 30 and 45, respectively
(reduced blade ratio of 2:3), then the simulation would require 2 blade passages for the
�rst blade row and 3 passages from the second blade row, such that the overall
circumferential pitch for either blade row is 2�

15 (the number 15 chosen as the largest
common factor in the blade counts 30 and 45).

76 NASA CR{206600

BOUNDATA KEYWORDS

The second restriction is that the interface separating two adjacent blade rows be a
surface of revolution, and that meshes along this interface have common axial and radial
grid distributions. This restriction simpli�es the time-space interpolation provided by the
BCPRR speci�cation.

This boundary condition requires the speci�cation of additional data, as shown in
the format descriptor above. The variable following the label THPER de�nes the total
circumferential span of the neighboring blade row's mesh representation in radians. Using
the blade counts given in the previous example, the circumferential span represented in
each blade row is determined by 2�

15 , and therefore THPER should be 0.41887903. The
variable following the next label, NBCPRR, indicates the number of mesh blocks through
which the time-space interpolation is to be performed.

In the example above, if we are applying the BCPRR speci�cation to the �rst blade
row, then NBCPRR should be 3, since there are 3 mesh block surfaces in the neighboring
blade row de�ning the circumferential extent of the �rst blade row. The numbers
immediately following the labels LBLOCK2B, LFACE2B, LDIR2B, L2LIMB, M2LIM1B, M2LIM2N,
N2LIM1B, and N2LIM2B represent the values of LBLOCK2, LFACE2, LDIR2, L2LIM, M2LIM1,
M2LIM2, N2LIM1, and N2LIM2 for each of the individual NBCPRR segments used in the
construction of the circumferential data array. The NBCPRR segments and their respective
circumferential direction indices (either M2LIM1B, M2LIM2B or N2LIM1B,N2LIM2B must be
listed in order of increasing theta coordinate). Due to the complex nature of the
circumferential interpolation operator, this boundary condition is restricted to speci�c
mesh con�gurations. The following chart describes the permitted mesh con�gurations for
the BCPRR speci�cation:

LFACE1 LFACE2 Circumferential Grids Must be

(Block #1 (Block #2 Coordinate Aligned in this

Face) Face) Direction Coordinate

------- ------- --------------- ---------------

I I or K K or I J

J J only K I

K I or K K or I J

In the example described above, if block numbers 1 and 2 are the block numbers for
the �rst blade row, and block numbers 3, 4, and 5 are the block numbers for the second
blade row, then the BCPRR speci�cation for each of the �rst blade row blocks would set
THPER = 0.41887903, NBCPRR = 2, and LBLOCK2B = 3, 4, 5. In a similar manner, the
speci�cation for each of the blocks in the second blade row would set THPER = 0.41887903,
NBCPRR = 4 (due to the use of the O-type mesh for each airfoil, the extent of the interface
between the two blade rows requires 2 mesh surfaces from each of the blade row 1 airfoil
meshes), and LBLOCK2B = 1, 1, 2, 2. It should be mentioned that this speci�cation is
somewhat unique in that more than one block is involved in the boundary speci�cation,
therefore the variable LBLOCK2 is essentially ignored; however, since the blocks speci�ed by
the LBLOCK2B variable are assumed to be essentially duplicate representations of
neighboring blade passages, the variables L2LIM, M2LIM1, M2LIM2, N2LIM1, and N2LIM2

are also ignored.

The time-space interpolation is constructed to permit the relative rotation of blocks

NASA CR{206600 77

BOUNDATA KEYWORDS

representing neighboring blade rows and therefore cannot be applied to Cartesian solution
meshes. The simulation is initiated from the relative position of the blocks at the start of
the calculation t=0. The interpolation scheme is area weighted to maintain a conservative
property across the interface between the relatively rotating mesh blocks.

Restrictions/Limitations
The BCPRR boundary speci�cation is restricted to mesh interfaces which lie on a
common surface, and have common axial and radial mesh coordinates. The mesh must
satisfy the coordinate restrictions listed in the table above. The BCPRR procedure is only
applicable to 3-D mesh systems.

Common Errors

� Failure to provide 2 BCPRR statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,
M1LIM2, N1LIM1, N1LIM2, M2LIM1B, M2LIM2B, N2LIM1B, N2LIM2B do not
correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2B).

� Attempt to use BCPRR on a 2-D mesh block.

� Meshes do not satisfy coordinate restrictions listed above.

� Meshes have dissimilar axial and radial coordinates at the interface.

� Neighboring blade row segments not listed in increasing theta coordinate.

� Application of BCPRR to mesh interfaces which do not share a common surface, or
which have excessive overlap.

� BCPRR runs very slowly on multiple processors - use BCPRM instead.

78 NASA CR{206600

BOUNDATA KEYWORDS

BDATIN

File Read In Mesh Interface Patching Scheme

Mesh Block #1
(51x3x51)

Mesh Block #2
(51x3x51)

BDATIN/BDATOU Combination Used
to Provide Disk Read/Write of Boundary
Data for Interblock Communication
Between Blocks #1 and #2

Application
The BDATIN speci�cation is used to read in boundary data from an external �le. This
�le may be either be created by an external program, or by the ADPAC boundary
speci�cation BDATOU. The application illustrated above indicates an application of the
BDATIN/BDATOU combination for a two block nozzle ow case. The
BDATIN/BDATOU combination is applied to the interface between the two mesh blocks
and is equivalent to a PATCH speci�cation, except that the inter-block communication is
accomplished through disk read/write rather than shared memory communication.

Boundary Data File Format
The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the BDATIN boundary condition are given below:

BDATIN 1 2 I I M P J K 51 1 1 3 1 51 1 3 1 51

FILENAME

bc.12.data

BDATIN 2 1 I I P M J K 1 51 1 3 1 51 1 3 1 51

FILENAME

bc.21.data

NASA CR{206600 79

BOUNDATA KEYWORDS

Note that a complete BDATIN speci�cation requires the speci�cation of a �lename from
which the boundary data is read.

Description
The BDATIN statement is utilized to provide boundary data for a mesh surface through
external �le speci�cation. During the application of a BDATIN speci�cation, an external
�le is opened, and phantom cell boundary data are read in for the appropriate
computational cells. The external �le data may be created by an external program, or
through the application of a BDATOU speci�cation. A coupled set of BDATIN/BDATOU
speci�cations can be e�ectively used to replace a PATCH boundary speci�cation. In this
case, inter-block communication would be achieved through external �le read/write rather
than shared memory. If the BDATIN/BDATOU combination is used to replace an
equivalent PATCH condition, it should be noted that both the BDATIN and BDATOU
speci�cations should be written in the same manner as the PATCH statement. In other
words, the BDATIN data is read in to the LBLOCK1 block on the mesh cells de�ned by
L1LIM, M1LIM1, M1LIM2, N1LIM1 and N1LIM2, and the BDATOU data is written out
from the LBLOCK2 block on the mesh cells de�ned by L2LIM, M2LIM1, M2LIM2, N2LIM1

and N1LIM2. The BDATIN/BDATOU routines were developed in conjunction with early
parallelization studies for the ADPAC to permit inter-block communication via shared disk
�le read/write operations. The routines are now considered useful for coupling the
ADPAC code with other codes capable of providing or using speci�ed boundary data.

A BDATIN speci�cation requires two additional lines in addition to the normal
boundary data �le descriptor, as shown above. The �rst additional line is simply a label,
while the second line indicates the �le name relative to the current directory from which
data will be read in for this particular boundary condition. BDATIN reads the �le at
every stage of the Runge-Kutta solver and separate �les are required for the coarser grids
when using multi-grid.

Restrictions/Limitations
The BDATIN/BDATOU coupling scheme is restricted to mesh interfaces which have a
one-to-one mesh point correspondence. Other restrictions appropriate for the PATCH
boundary condition also apply to mesh coupling using the BDATIN/BDATOU scheme.
Data provided in the external �le for the BDATIN speci�cation must represent
cell-centered data and must be normalized consistently with the ADPAC ow variable
nondimensionalization procedure.

The BDATIN/BDATOU boundary conditions should not be run using multi-grid
and allowing ADPAC to automatically generate the coarse grid BDATIN/BDATOU
statements, because ADPAC will repeat the same �lename when creating the coarser levels
of multi-grid. Therefore during the multi-grid cycle, the �les containing the boundary
data would be overwritten by di�erent levels of mesh size. In such a case the coarse mesh
would read only a portion of the �ne mesh data, or vice versa, the �ne mesh would run
out of data if it tried to read the coarse level �le. This can be avoided by either running
ADPAC without multi-grid or by \hand-writing" the coarser boundary coditions (see
input keyword FRDMUL).

80 NASA CR{206600

BOUNDATA KEYWORDS

Common Errors

� Failure to provide �le name for BDATIN boundary data �le speci�cation.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,
M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not correctly
de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� BDATIN/BDATOU coupling scheme desired, but only one of the
BDATIN/BDATOU speci�cations provided.

� BDATIN/BDATOU coupling scheme boundary speci�cation for a periodic
boundary is applied to a non-periodic mesh.

� BDATIN/BDATOU coupling scheme boundary speci�cation applied to a spatially
periodic Cartesian geometry using the cylindrical coordinate solution scheme or vice
versa (results in incorrect spatial periodicity relationships). The BDATIN/BDATOU
coupling scheme boundary speci�cations for Cartesian geometries must use the
Cartesian solution algorithm in ADPAC (see input variable FCART).

� Using multi-grid and letting ADPAC automatically generate the coarse grid
BDATIN statements. In this case the coarse mesh would read only a portion of the
�ne mesh data.

NASA CR{206600 81

BOUNDATA KEYWORDS

BDATOU

File Write Out Mesh Interface Patching Scheme

Mesh Block #1
(51x3x51)

Mesh Block #2
(51x3x51)

BDATIN/BDATOU Combination Used
to Provide Disk Read/Write of Boundary
Data for Interblock Communication
Between Blocks #1 and #2

Application
The BDATOU speci�cation is used to write out boundary data to an external �le. This
�le may either be utilized by an external program, or by the ADPAC boundary
speci�cation BDATIN. The application illustrated above indicates an application of the
BDATIN/BDATOU combination for a two block nozzle ow case. The
BDATIN/BDATOU combination is applied to the interface between the two mesh blocks
and is equivalent to a PATCH speci�cation, except that the inter-block communication is
accomplished through disk read/write rather than shared memory communication.

Boundary Data File Format
The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the BDATOU boundary condition are given below:

BDATOU 1 2 I I M P J K 51 1 1 3 1 51 1 3 1 51

FILENAME

bc.12.data

BDATOU 2 1 I I P M J K 1 51 1 3 1 51 1 3 1 51

FILENAME

bc.21.data

82 NASA CR{206600

BOUNDATA KEYWORDS

Note that a complete BDATOU speci�cation requires the speci�cation of a �lename from
which the boundary data is read.

Description
The BDATOU statement is utilized to export boundary data for a mesh surface through
external �le speci�cation. During the application of a BDATOU speci�cation, an external
�le is opened, and near boundary cell-centered data are written in for the appropriate
computational cells. The external �le data may then be utilized by an external program,
or through the application of a BDATIN speci�cation. Refer to BDATIN for additional
detail in coupling these two boundary conditions.

A BDATOU speci�cation requires two additional lines in addition to the normal
boundary data �le descriptor, as shown above. The �rst additional line is simply a label,
while the second line indicates the �le name relative to the current directory to which data
will be written out for this particular boundary condition. BDATOU writes the �le at
every stage of the Runge-Kutta solver and separate �les are required for the coarser grids
when using multi-grid.

Restrictions/Limitations
The BDATIN/BDATOU coupling scheme is restricted to mesh interfaces which have a
one-to-one mesh point correspondence. Other restrictions appropriate for the PATCH
boundary condition also apply to mesh coupling using the BDATIN/BDATOU scheme.
Data provided in the external �le for the BDATOU speci�cation represents near-boundary
cell-centered data and is normalized consistently with the ADPAC ow variable
nondimensionalization procedure.

The BDATIN/BDATOU boundary conditions should not be run using multi-grid
and allowing ADPAC to automatically generate the coarse grid BDATIN/BDATOU
statements, because ADPAC will repeat the same �lename when creating the coarser levels
of multi-grid. Therefore during the multi-grid cycle, the �les containing the boundary
data would be overwritten by di�erent levels of mesh size. In such a case the coarse mesh
would read only a portion of the �ne mesh data, or vice versa, the �ne mesh would run
out of data if it tried to read the coarse level �le. This can be avoided by either running
ADPAC without multi-grid or by \hand-writing" the coarser boundary coditions (see
input keyword FRDMUL).

Common Errors

� Failure to provide �le name for BDATOU boundary data �le speci�cation.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,
M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not correctly
de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� BDATIN/BDATOU coupling scheme desired, but only one of the
BDATIN/BDATOU speci�cations provided.

NASA CR{206600 83

BOUNDATA KEYWORDS

� BDATIN/BDATOU coupling scheme boundary speci�cation for a periodic
boundary is applied to a non-periodic mesh.

� BDATIN/BDATOU coupling scheme boundary speci�cation applied to a spatially
periodic Cartesian geometry using the cylindrical coordinate solution scheme or vice
versa (results in incorrect spatial periodicity relationships) The BDATIN/BDATOU
coupling scheme boundary speci�cations for Cartesian geometries must use the
Cartesian solution algorithm in ADPAC (see input variable FCART).

� Using multi-grid and letting ADPAC automatically generate the coarse grid
BDATOU statements. In this case the coarse mesh would write only a portion of
the �ne mesh data.

84 NASA CR{206600

BOUNDATA KEYWORDS

ENDDATA

Boundary Data File Read Terminator

Application
The ENDDATA statement causes the ADPAC boundary data �le read utility to
discontinue reading lines in the boundary data �le and proceeds with normal code
processing. Any lines following an ENDDATA statement in a boundary data �le are
ignored.

Boundary Data File Format
The boundary data �le speci�cation for an ENDDATA statement is given below:

ENDDATA

Note that the ENDDATA statement does not require the accompanying values (i.e.,
LBLOCK1, LBLOCK2, LFACE1, etc.) as do all other boundary data �le keywords.

Description
The ENDDATA statement is utilized to provide a terminator for the boundary data �le
read sequence in the ADPAC code. Under normal operating conditions, the boundary data
�le is read in one line at a time and parsed to determine if a boundary data �le keyword is
present and uncommented on each line. When the end of the �le is reached, the boundary
data �le read sequence stops, and normal processing continues as usual. In some cases, it
may be desirable to terminate the boundary data �le read sequence before the end of the
�le, and the ENDDATA statement is provided for this purpose. Whenever an ENDDATA
statement is reached, the boundary data �le read sequence is terminated, and all
remaining lines in the boundary data �le are ignored. The ENDDATA keyword is useful
for debugging boundary condition problems, as whole portions of the boundary data �le
can be e�ectively eliminated by simply preceding the section with an ENDDATA
statement.

Restrictions/Limitations
The ENDDATA keyword has no restrictions.

Common Errors

� Desired boundary conditions speci�cations following an ENDDATA statement are
ignored.

� ADPAC complains because an insu�cient number of boundary conditions were

NASA CR{206600 85

BOUNDATA KEYWORDS

provided for the external boundaries of each mesh block (see input keyword
FBCWARN).

86 NASA CR{206600

BOUNDATA KEYWORDS

ENDTTA

Endwall Treatment Time-Average Mesh Block
Interface Patching Scheme

CCCCCCCCCCCCCCC
CCCCCCCCCCCCCCC
CCCCCCCCCCCCCCC

CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

Geometry
Fan
Rotor

Casing
Treatment

Computational
Model

Block #1
(99x33x33)

Block #2
(17x17x33)

Single Blade Passage
Representation

Discrete Endwall Treatment
Representation (Only One
Treatment Passage Required)

ENDTTA Boundary Specification
Used to Couple Blade Passage
Flowfield to Discrete Treatment/
Endwall Flow

Endwall Regions Between
Discrete Treatments are
Accounted for in ENDTTA

x

r

i

j

k

Application
The ENDTTA boundary speci�cation was developed speci�cally to permit numerical
prediction of turbomachinery airfoil blade row ows employing endwall treatments such as
slots, grooves, or embedded bladed passages in a time-averaged fashion. The example
graphic above illustrates a 3-D blocked mesh system for a turbofan engine fan rotor
employing an axial slot casing treatment. The ENDTTA boundary speci�cation employs a
time-averaging operator (circumferential average of ow variables) between adjacent
rotating and non-rotating mesh blocks to simulate the e�ects of the blade row/endwall
treatment interaction. As such, it is possible to perform steady-state (representative of a
time average) numerical analysis of turbomachinery blade passages and endwall
treatments which have arbitrary blade passage/treatment passage count ratios.

Boundary Data File Format

NASA CR{206600 87

BOUNDATA KEYWORDS

The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the ENDTTA boundary condition are given below:

ENDTTA 1 2 J J M P L L 49 1 49 81 1 33 1 33 1 17

NTREAT RPMWALL TWALL

113 0.0 0.0

MBCAVG 2 1 J J P M I K 1 49 1 33 1 17 49 81 1 33

NSEGS

1

BLK LFACE2 LDIR2 L2LIM M2LIM1 M2LIM2 N2LIM1 N2LIM2

1 J M 49 49 81 1 33

Note that a complete ENDTTA speci�cation generally requires a companion MBCAVG
speci�cation to complete the blade passage mesh/treatment passage mesh interface
speci�cation. In the example above, the �rst speci�cation provides the inter-block
communication for block 1 (blade passage mesh) from block 2 (treatment passage mesh)
which ultimately accounts for the inuence of the true endwall in the boundary
speci�cation. The second speci�cation (MBCAVG) is applied to the treatment passage
mesh boundary to simulate the time-average (circumferential average) of the neighboring
blade passage mesh. It is a common error to under-specify an ENDTTA boundary by
neglecting to specify the companion MBCAVG.

Description
The ENDTTA boundary statement provides a means for block-to-block communication
for the prediction of the time-averaged ow for turbomachinery blade rows employing
endwall treatments such as discrete slots, grooves, or embedded bladed passages. The
boundary condition is restricted to j=constant mesh surfaces only and must possess
aligned coordinates in the i direction, but have misaligned mesh points and extents in the
circumferential (k) direction. The ENDTTA boundary speci�cation is valid for 3-D
cylindrical solution mesh blocks only.

The ENDTTA speci�cation requires the speci�cation of additional data, as shown in
the format descriptor above. The �rst additional line following an ENDTTA speci�cation
is assumed to be a label for the variables NTREAT, RPMWALL, and TWALL. The next line
contains the values for the variables NTREAT, RPMWALL, and TWALL. The variable NTREAT
represents the total number of discrete treatments for the entire rotor. The analysis is
normally performed for a single rotor blade passage and a single treatment blade passage,
and the value of NTREAT is used to e�ectively set the circumferential spacing between
discrete treatment passages. The next variable, RPMWALL, sets the value of the rotational
speed of the endwall regions which separate the discrete treatments. Naturally, this also
implies the rotational speed of the treatments themselves, and the value of RPMWALL in
this context must be consistent with the value of RPM speci�ed in the input �le for the
treatment passage mesh block. The third variable, TWALL, sets the thermal boundary
condition for the wall segments separating the discrete treatment passages (see SSVI).

Restrictions/Limitations

88 NASA CR{206600

BOUNDATA KEYWORDS

The ENDTTA boundary speci�cation is restricted to mesh interfaces which lie on a
common surface (no signi�cant overlap). The ENDTTA procedure permits only that the k
coordinates between adjacent mesh surfaces are misaligned. The ENDTTA procedure is
only valid if applied to j=constant mesh surfaces. ENDTTA will not run across multiple
processors in a parallel computing environment if the blocks are across separate
processors. In the above example, blocks 1 and 2 would need to be on the same processor.

Common Errors

� Failure to provide a coupled pair of ENDTTA and MBCAVG statements for each
interface.

� Failure to properly specify the values for RPM, TWALL and/or NTREAT.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,
M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not correctly
de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Attempt to use ENDTTA for an i or k constant boundary.

� Attempt to use ENDTTA for a Cartesian solution mesh.

� Attempt to use ENDTTA for a boundary which has 2 misaligned coordinates.

� Attempt to use ENDTTA between blocks on di�erent processors.

NASA CR{206600 89

BOUNDATA KEYWORDS

EXITG

Generic Outow Boundary Condition

Mesh Block #1
(49x33x33)

Duct Exit with Uniform
Exit Static Pressure Requires
an EXITG Specification

i

k

j

Flow

Application
The EXITG speci�cation is used to impose a generic subsonic outow boundary condition
with a uniform exit static pressure. The example graphic above depicts a simple duct ow
using a Cartesian-based H-grid, where the exit boundary plane is controlled by an EXITG
speci�cation.

Boundary Data File Format
The boundary data �le speci�cation for the mesh surface indicated in the illustrative
graphic for the EXITG boundary condition is given below:

EXITG 1 1 I I M M J K 49 49 1 33 1 33 1 33 1 33

PEXIT

0.625

or the alternate speci�cation including the mass ow speci�cation:

EXITG 1 1 I I M M J K 49 49 1 33 1 33 1 33 1 33

PEXIT EMDOT PRELAX

0.625 40.0 0.001

Note that a complete EXITG speci�cation requires two additional lines following the

90 NASA CR{206600

BOUNDATA KEYWORDS

EXITG boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common EXITG speci�cation error.

Description
The EXITG statement speci�es that a generic, subsonic, uniform static pressure exit ow
boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on the block
speci�ed by LBLOCK1. The EXITG boundary condition should be applied for those cases
where any other \specialized" exit boundary condition (i.e., EXITT, EXITP) does not
apply. The EXITG boundary condition is also likely to be somewhat more e�cient
computationally than the other exit boundary condition procedures, at the expense of
some physical simpli�cation. EXITG may be used on any mesh face (i, j, or k constant)
for either cylindrical or Cartesian-based solution schemes (see input variable FCART).

The EXITG procedure utilizes a Reimann invariant formulation to compute exit
velocities based on a speci�ed constant exit static pressure. Included in the EXITG
procedure is a special correction scheme which forces the ow to pass out of the ow
domain at the boundary. In other words, if the computed velocities result in a local inow
at the EXITG boundary, no matter how small the magnitude of the inow, the velocities
are reset to zero at that point. This boundary condition requires the speci�cation of
additional data. The �rst additional line following the EXITG speci�cation is assumed to
be a label. The next line contains the value imposed for the variables PEXIT which
represents the downstream exit static pressure ratio used in the EXITG characteristic
solution sequence. The value of the PEXIT variable is the desired normalized downstream
static pressure computed as:

PEXIT =
Pstatic;desired

Pref

where the variable Pref is speci�ed by the input variable PREF. It should be mentioned
that for most geometries, the value of PEXIT, in combination with any inlet ow boundary
conditions, will normally govern the resulting solution mass ow rate. Values of PEXIT
<0.0 are not permitted. As the value of EXITP is reduced, the ow through the boundary
will ultimately choke, and further reductions of EXITP will no longer increase the mass
ow through the boundary. Naturally, poor convergence or solution divergence can occur
if PEXIT is too high or too low when compared to the rest of the ow domain. In such
cases where this occurs, it is recommended that the solution be started with more
conservative boundary values, and then restarted using the �nal boundary values.

An alternate speci�cation is provided for the EXITG boundary speci�cation as
shown in the sample application above. In this case, three values are included following
the original boundary speci�cation line. The alternate speci�cation is provided as a means
of achieving a desired mass ow rate through the bounding surface using the EXITG
algorithm. The desired mass ow rate is achieved iteratively by incrementally adjusting
the exit static pressure speci�cation until the desired ow rate is achieved. Therefore, in
this speci�cation, the variable PEXIT described in detail above is the initial exit static
pressure used in the iterative process, EMDOT represents the desired mass ow rate through
the bounding surface in pounds mass, and PRELAX is a relaxation factor to stabilize the
iterative process (values may range from 0.0 to 1.0, though poor convergence is likely for
values larger than 0.1).

NASA CR{206600 91

BOUNDATA KEYWORDS

For applications to 2-D surface boundaries, the exit plane is projected to create a
exit area over which to calculate the mass ow. For Cartesian ow calculations a unit
depth (1.0 in mesh coordinates) is assumed for the third coordinate direction to determine
the mass ow rate. For cylindrical ow calculations, the geometry is assumed to be
axisymmetric and a multiple of 2� is used in the mass ow integration (the mass ow is
computed as if the full circumference of the axisymmetric geometry were employed).

This procedure is not foolproof, and su�ers from the fact that when a job is
restarted, if an updated exit pressure is not inserted in the boundary data �le, then the
pressure-mass ow iterative process will start over. The ADPAC code will automatically
determine when to employ the iterative process by detecting the presence of the additional
boundary speci�cation variables.

Restrictions/Limitations
The EXITG boundary speci�cation can be applied to both 3-D and 2-D mesh surfaces.

Common Errors

� Failure to specify the additional data value PEXIT.

� Improper speci�cation of the alternate (mass ow) boundary scheme.

� Reductions in the value of PEXIT do not increase the mass ow rate because of ow
choking.

� Value of PEXIT is too high (ow cannot get started).

92 NASA CR{206600

BOUNDATA KEYWORDS

EXITN

Non-Reecting Outow Boundary Condition

Mesh Block #1
(49x33x33)

Non−reflecting Duct Exit for
Time−dependent Flow Requires
an EXITN Specification

i

k

j

Flow

Application
The EXITN speci�cation is used to impose a non-reecting outow boundary condition
for time-dependent ow calculations where spurious numerical reections normally
imposed by other boundary procedures are undesirable. The example graphic above
depicts a simple duct ow using a Cartesian-based H-grid, where the exit boundary plane
is controlled by an EXITN speci�cation. This boundary condition should be used for
time-dependent ow calculations only.

Boundary Data File Format
The boundary data �le speci�cation for the mesh surface indicated in the illustrative
graphic for the EXITN boundary condition is given below:

EXITN 1 1 I I M M J K 49 49 1 33 1 33 1 33 1 33

Description
The EXITN statement speci�es that a non-reecting exit ow boundary condition is to be
applied to the mesh surface speci�ed by LFACE1 on the block speci�ed by LBLOCK1. The
EXITN boundary condition should be used for time-dependent ow calculations where
spurious numerical reections which normally occur for other exit boundary conditions are

NASA CR{206600 93

BOUNDATA KEYWORDS

undesirable. EXITN may be used on any mesh face (i, j, or k constant) for either
cylindrical or Cartesian-based solution schemes (see input variable FCART). The EXITN
procedure utilizes a characteristic-based formulation described in Appendix A.

Restrictions/Limitations
Because no pressure is explicitly speci�ed using EXITN, it relies on whatever pressure is
initially in the phantom cell. It is best to run without the EXITN boundary condition to
set up the pressure �eld and then turn on the EXITN boundary with a restart so feasible
values of pressure are set in the phantom cells. If no restart is used, the cells will be
initialized to PREF which may not work well in some cases. The EXITN boundary
speci�cation should only be applied for time-dependent ow calculations restarted from a
steady-state restart �le. Steady-state problems can usually use the EXT2DG, EXITX, or
EXITT boundary speci�cation.

Common Errors

� Application of EXITN for a steady-state solution.

94 NASA CR{206600

BOUNDATA KEYWORDS

EXITP

Patched Turbomachinery Exit Boundary Condition

Mesh Block #1
(73x13x25)

Patched Exit Static Pressure and Radial
Equilibrium for Turbomachinery Exit Flow
Requires an EXITP Specification
(illustrated in Boundary Data File Format
statements below)

ik

j

xy

z

RadiusRadius

Circumferential
Flow Angle

Static
Pressure

Static pressure obtained from a neighboring
block at either lower or upper "j" boundary
Radial equilibrium equation integrated
to complete exit static pressure specification

Flow

Mesh Block #2
(73x21x25)

Application
The EXITP speci�cation is used to impose a turbomachinery-based exit boundary
condition based on radial equilibrium for mesh systems employing multiple blocks radially
across the exit plane. The example graphic illustrates a two block 3-D mesh system used
to predict the ow through a blade passage of a turbomachinery fan rotor with a part
span shroud. The blocks are divided radially by the part span shroud, and as a result, the
exit boundary plane consists of two mesh boundary segments. In order to employ a
turbomachinery-based radial equilibrium exit ow boundary condition for this case, the
EXITT speci�cation is applied to the inner block 1 and the EXITP boundary condition is
used for the outer block 2 to complete the inner to outer integration of the radial
equilibrium equation across the mesh block interface.

Boundary Data File Format
The boundary data �le speci�cation for the mesh surface indicated in the illustrative
graphic for the EXITP boundary condition is given below:

EXITP 2 1 I I M M L H 73 73 1 21 1 25 13 13 1 25

Note that the M2LIM1, M2LIM2 variables in the EXITP speci�cation de�ne a single j mesh
line in mesh block LBLOCK2. Failure to properly regard this requirement is a common
EXITP speci�cation error. It should also be mentioned that EXITP also requires proper

NASA CR{206600 95

BOUNDATA KEYWORDS

speci�cation of the LSPEC1 variable for proper execution.

Description
The EXITP keyword speci�es that a turbomachinery-based radial equilibrium patched
exit ow boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on
the block speci�ed by LBLOCK1. The EXITP boundary condition was speci�cally designed
as an exit ow boundary procedure for axial and mixed ow turbomachinery geometries
employing multiple, stacked mesh blocks (radially) at an exit boundary plane. The
EXITP boundary condition procedure utilizes a combination static pressure speci�cation
and integration of the radial equilibrium equation to de�ne the static pressure �eld at all
points on the boundary surface. The initial static pressure speci�cation used to initiate
the radial equilibrium integration process is obtained from a neighboring mesh block.

As a result of the complexity of this procedure, several mesh restrictions were
imposed to simplify the application of this approach. The primary assumption is that the
integration of the radial equilibrium equation may be performed along the j coordinate
direction of the mesh. Hence, the j coordinate should be the radial-like direction. A single
speci�cation of static pressure is required at either the maximum or minimum extreme of
the j coordinate of the boundary surface in order to initiate the integration process. The
direction of integration, and location of application of the speci�ed exit static pressure are
determined by the LSPEC1 variable in the calling sequence. Refer to EXITT for details of
specifying LSPEC1.

The remaining ow variables on the EXITP boundary are updated by a Reimann
invariant formulation based on the resulting local static pressure �eld. Included in the
EXITP procedure is a special correction scheme which forces the ow to pass out of the
ow domain. In other words, if the computed velocities result in a local inow at the
EXITP boundary, no matter how small the magnitude of the inow, the velocities are
reset to zero at that point.

Restrictions/Limitations
The EXITP boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial ow turbomachinery, this

implies that the axis of rotation (or the centerline) coincides with the x axis. It is also
required that the radial-like direction of the mesh be de�ned by the j coordinate, and is
therefore not valid on a j =constant mesh plane. This is required in order to properly
integrate the radial equilibrium equation to complete the exit static pressure speci�cation.
The EXITP boundary speci�cation is restricted to 3-D mesh surfaces (2-D z-r mesh
surfaces should use the EXT2DP boundary speci�cation).

Common Errors

� Application of EXITP to a 2-D z-r mesh system.

� Failure to properly specify the LSPEC2 variable.

� M2LIM1 and M2LIM2 di�er.

96 NASA CR{206600

BOUNDATA KEYWORDS

� Radial-like direction of the mesh is not the j coordinate.

� Failure to properly specify the LSPEC1 variable on the boundary data �le
speci�cation line.

NASA CR{206600 97

BOUNDATA KEYWORDS

EXITT

Turbomachinery Exit Boundary Condition

Mesh Block #1
(49x17x17)

Specified Exit Static Pressure and Radial
Equilibrium for Turbomachinery Exit Flow
Requires an EXITT Specification
(illustrated in Boundary Data File Format
statements below)

ik

j

xy

z

RadiusRadius

Circumferential
Flow Angle

Static
Pressure

Static pressure specified at either lower
or upper "j" boundary
Radial equilibrium equation integrated
to complete exit static pressure specification

Flow

Application
The EXITT speci�cation is used to impose a turbomachinery-based exit boundary
condition based on radial equilibrium. The illustrative graphic above depicts an
application of the EXITT outow boundary condition for an H-type mesh for a
turbomachinery fan rotor blade passage. The EXITT speci�cation provides the radial
variation of ow properties at the outow boundary resulting from the application of a
simpli�ed form of the radial equilibrium equation.

Boundary Data File Format
The boundary data �le speci�cation for the mesh surface indicated in the illustrative
graphic for the EXITT boundary condition is given below:

EXITT 1 1 I I M M L L 49 49 1 17 1 17 1 17 1 17

PEXIT

1.105

or the alternate speci�cation including the mass ow speci�cation:

EXITT 1 1 I I M M L L 49 49 1 17 1 17 1 17 1 17

PEXIT EMDOT PRELAX

1.105 13.7 0.001

98 NASA CR{206600

BOUNDATA KEYWORDS

Note that a complete EXITT speci�cation requires two additional lines following the
EXITT boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common EXITT speci�cation error. It should also be mentioned that
EXITT also requires proper speci�cation of the LSPEC1 variable for proper execution.

Description
The EXITT keyword speci�es that a turbomachinery-based radial equilibrium exit ow
boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on the block
speci�ed by LBLOCK1. The EXITT boundary condition was speci�cally designed as an exit
ow boundary procedure for axial and mixed ow turbomachinery geometries (pure radial
ow turbomachinery exit ow boundaries usually use the EXITG boundary condition).
The EXITT boundary condition procedure utilizes a combination static pressure
speci�cation and integration of the radial equilibrium equation to de�ne the static
pressure �eld at all points on the boundary surface.

As a result of the complexity of this procedure, several mesh restrictions were
imposed to simplify the application of this approach. The primary assumption is that the
integration of the radial equilibrium equation may be performed along the j coordinate
direction of the mesh. Hence, the j coordinate should be the radial-like direction. A single
speci�cation of static pressure is required at either the maximum or minimum extreme of
the j coordinate of the boundary surface in order to initiate the integration process.

The direction of integration and location of application of the speci�ed exit static
pressure are determined by the LSPEC1 variable in the calling sequence. If LSPEC1 = L, for
LOW, then PEXIT is applied to the lower (smallest value) of the j index, and the radial
equilibrium equation is integrated outward (increasing j direction). If LSPEC1 = H, for
HIGH, then PEXIT is applied to the upper (largest value) of the j index, and the radial
equilibrium equation is integrated inward (decreasing j direction). The remaining ow
variables on the EXITT boundary are updated by a Reimann invariant formulation based
on the resulting local static pressure �eld. Included in the EXITT procedure is a special
correction scheme which forces the ow to pass out of the ow domain. In other words, if
the computed velocities result in a local inow at the EXITT boundary, no matter how
small the magnitude of the inow, the velocities are reset to zero at that point.

This boundary condition requires the speci�cation of additional data, as shown in
the boundary data format descriptor above. The �rst additional line following the EXITT
speci�cation is assumed to be a label. The line following the PEXIT label contains the
value of speci�ed non-dimensional exit static pressure used to initiate the radial
equilibrium integration procedure. Refer to EXITG for guidelines on PEXIT speci�cation.

An alternate speci�cation is provided for the EXITT boundary speci�cation as
shown in the sample application above. In this case, three values are included following
the original boundary speci�cation line. The alternate speci�cation is provided as a means
of achieving a desired mass ow rate through the bounding surface using the EXITT
algorithm. Again, refer to EXITG for guidelines on using the mass ow speci�cation
option.

Restrictions/Limitations

NASA CR{206600 99

BOUNDATA KEYWORDS

The EXITT boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial ow turbomachinery, this

implies that the axis of rotation (or the centerline) coincides with the x axis. It is also
required that the radial-like direction of the mesh be de�ned by the j coordinate, and is
therefore not valid on a j =constant mesh plane. This is required in order to properly
integrate the radial equilibrium equation to complete the exit static pressure speci�cation.
Examples of this type of mesh system can be found in the chapter de�ning standard
con�gurations. The EXITT boundary speci�cation is restricted to 3-D mesh surfaces (2-D
z-r mesh surfaces should use the EXT2DT boundary speci�cation).

Common Errors

� Application of EXITT to a 2-D z-r mesh system.

� Failure to specify the additional data value PEXIT.

� Improper speci�cation of the alternate (mass ow) iterative scheme.

� Radial-like direction of the mesh is not the j coordinate.

� Mesh does not possess circumferential symmetry (axial, radial mesh coordinates
vary in the circumferential coordinate direction).

� Failure to properly specify the LSPEC1 variable on the boundary data �le
speci�cation line.

� Value of PEXIT is too high (ow cannot get started).

100 NASA CR{206600

BOUNDATA KEYWORDS

EXITX

Non-Reecting Steady State Turbomachinery Exit
Boundary Condition

Mesh Block #1
(49x17x17)

Specified Exit Static Pressure and Radial
Equilibrium for Non−reflecting Turbomachinery
Exit Flow Requires an EXITX Specification

ik

j

xy

z

RadiusRadius

Circumferential
Flow Angle

Static
Pressure

Static pressure specified at either lower
or upper "j" boundary
Radial equilibrium equation integrated
to complete exit static pressure specification

Flow

Application
The EXITX speci�cation is used to impose a non-reecting turbomachinery-based exit
boundary condition based on radial equilibrium for steady ow calculations. The
illustrative graphic above depicts an application of the EXITX outow boundary condition
for an H-type mesh for a turbomachinery fan rotor blade passage. The EXITX
speci�cation provides the radial variation of ow properties at the outow boundary
resulting from the application of a simpli�ed form of the radial equilibrium equation.

Boundary Data File Format
The boundary data �le speci�cation for the mesh surface indicated in the illustrative
graphic for the EXITX boundary condition is given below:

EXITX 1 1 I I M M L L 49 49 1 17 1 17 1 17 1 17

PEXIT

1.105

Note that a complete EXITX speci�cation requires two additional lines following the
EXITX boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common EXITX speci�cation error. It should also be mentioned that
EXITX also requires proper speci�cation of the LSPEC1 variable for proper execution.

NASA CR{206600 101

BOUNDATA KEYWORDS

Description
The EXITX keyword speci�es that a non-reecting turbomachinery-based radial
equilibrium exit ow boundary condition is to be applied to the mesh surface speci�ed by
LFACE1 on the block speci�ed by LBLOCK1. The EXITX boundary condition was
speci�cally designed as a non-reecting exit ow boundary procedure for steady state
analysis of axial and mixed ow turbomachinery geometries. The EXITX boundary
condition procedure utilizes a combination static pressure speci�cation and integration of
the radial equilibrium equation to de�ne the circumferentially averaged static pressure
�eld at all points on the boundary surface. The circumferentially-averaged pressure at the
exit boundary is forced to match the imposed static pressure. The use of the
circumferential average permits ow properties to vary across the exit plane, while still
maintaining the desired overall ow.

As a result of the complexity of this procedure, several mesh restrictions were
imposed to simplify the application of this approach. The primary assumption is that the
integration of the radial equilibrium equation is performed along the j coordinate
direction of the mesh. Hence, the j coordinate should be the radial-like direction. A single
speci�cation of static pressure is required at either the maximum or minimum extreme of
the j coordinate of the boundary surface in order to initiate the integration process.

The direction of integration and location of application of the speci�ed exit static
pressure are determined by the LSPEC1 variable in the calling sequence. If LSPEC1 = L, for
LOW, then PEXIT is applied to the lower (smallest value) of the j index, and the radial
equilibrium equation is integrated outward (increasing j direction). If LSPEC1 = H, for
HIGH, then PEXIT is applied to the upper (largest value) of the j index, and the radial
equilibrium equation is integrated inward (decreasing j direction). The remaining ow
variables on the EXITX boundary are updated by a Reimann invariant formulation based
on the resulting local static pressure �eld. Included in the EXITX procedure is a special
correction scheme which forces the ow to pass out of the ow domain. In other words, if
the computed velocities result in a local inow at the EXITX boundary, no matter how
small the magnitude of the inow, the velocities are reset to zero at that point. This may
result in a degradation of the non-reective nature of this boundary condition in favor of a
more stable boundary speci�cation.

This boundary condition requires the speci�cation of additional data, as shown in
the boundary data format descriptor above. The �rst additional line following the EXITX
speci�cation is assumed to be a label. The line following the PEXIT label contains the
value of speci�ed non-dimensional exit static pressure used to initiate the radial
equilibrium integration procedure. Refer to EXITG for guidelines in specifying PEXIT.

Restrictions/Limitations
The EXITX boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial ow turbomachinery, this

implies that the axis of rotation (centerline) coincides with the x axis. It is also required
that the radial-like direction of the mesh be de�ned by the j coordinate, and is therefore
not valid on a j =constant mesh plane. This is required in order to properly integrate the
radial equilibrium equation to complete the exit static pressure speci�cation. The EXITX
boundary speci�cation is restricted to 3-D mesh surfaces. The EXITX boundary condition

102 NASA CR{206600

BOUNDATA KEYWORDS

is only valid for steady-state ow calculations.

Common Errors

� Application of EXITX to a 2-D z-r mesh system.

� Failure to specify the additional data value PEXIT.

� Radial-like direction of the mesh is not the j coordinate.

� Mesh does not possess circumferential symmetry (axial, radial mesh coordinates
vary in the circumferential coordinate direction).

� Failure to properly specify the LSPEC1 variable on the boundary data �le
speci�cation line.

� Value of PEXIT is too high (ow cannot get started).

� Application of EXITX for time-dependent ow calculations.

NASA CR{206600 103

BOUNDATA KEYWORDS

EXT2DP

2-D Patched Turbomachinery Exit Boundary Condition

Patched Exit Static Pressure and Radial
Equilibrium for 2−D Turbomachinery Exit Flow
Requires an EXT2DP Specification
(illustrated in Boundary Data File Format
statements below)

Static pressure specified at either
lower or upper "j" boundary
Radial equilibrium equation integrated to
complete exit static pressure specification

Radius

Static
Pressure

Circumferential
Flow Angle

Radius

2−D Mesh Block #3
(49x9x1)

2−D Mesh Block #2
(65x9x1)

2−D Mesh Block #1
(65x9x1)

2−D Mesh Block #4
(49x9x1)

Flow

r

x i

j

Application
The EXT2DP speci�cation is used to impose a turbomachinery-based exit boundary
condition based on radial equilibrium for 2-D z-r mesh systems employing multiple blocks
radially across the exit plane. The example graphic above illustrates a four block mesh
system used to predict the axisymmetric ow through a high bypass ratio turbofan engine
geometry. The solution utilizes a speci�ed freestream static pressure at the outer
boundary of block 4, and an EXT2DT speci�cation to integrate the radial equilibrium
equation equation inward radially along the outow boundary. In order to continue the
radial equilibrium integration process across the block boundary between blocks 3 and 4,
an EXT2DP speci�cation is used to patch the two blocks.

Boundary Data File Format
The boundary data �le speci�cation for the 2-D mesh surface indicated in the illustrative
graphic for the EXT2DP boundary condition is given below:

104 NASA CR{206600

BOUNDATA KEYWORDS

EXT2DP 4 3 I I M M L H 49 49 1 9 1 2 9 9 1 2

Note that the M2LIM1, M2LIM2 variables in the EXT2DP speci�cation de�ne a single j
mesh line in mesh block LBLOCK2. Failure to properly regard this requirement is a
common EXT2DP speci�cation error. It should also be mentioned that EXT2DP also
requires proper speci�cation of the LSPEC1 variable for proper execution.

Description
The EXT2DP keyword speci�es that a turbomachinery-based radial equilibrium patched
exit ow boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on
the 2-D block speci�ed by LBLOCK1. The EXT2DP boundary condition was speci�cally
designed as an exit ow boundary procedure for axial and mixed ow turbomachinery
geometries employing multiple, stacked 2-D mesh blocks (radially) at an exit boundary
plane. The EXT2DP boundary condition is the 2-D version of EXITP. The description of
EXITP should be referenced for details in using EXT2DP.

Restrictions/Limitations
The EXT2DP boundary condition assumes that the mesh is oriented in such a fashion
that the radial coordinate is de�ned as r =

p
y2 + z2. For axial ow turbomachinery, this

implies that the axis of rotation (or the centerline) coincides with the x axis. It is also
required that the radial-like direction of the mesh be de�ned by the j coordinate, and is
therefore not valid on a j =constant mesh plane. This is required in order to properly
integrate the radial equilibrium equation to complete the exit static pressure speci�cation.
The EXT2DP boundary speci�cation is restricted to 2-D mesh surfaces (3-D mesh
surfaces should use the EXITP boundary speci�cation). By default, it is important that
this type of boundary condition be carefully speci�ed and the �nal solution carefully
examined to ensure that the desired mesh patching be adequately satis�ed. It is a
common error to patch to the wrong grid, or the wrong end of the correct grid, and still
obtain a converged solution.

Common Errors

� Application of EXT2DP to a 3-D mesh system.

� Failure to properly specify the LSPEC1, LSPEC2 variables.

� M2LIM1 and M2LIM2 di�er.

� Radial-like direction of the mesh is not the j coordinate.

� Failure to properly specify the LSPEC1 variable on the boundary data �le
speci�cation line.

� EXT2DP speci�cation patched to the wrong grid.

� EXT2DP speci�cation patched to the wrong end of the correct grid.

NASA CR{206600 105

BOUNDATA KEYWORDS

� EXT2DP boundary condition used but no EXT2DT or EXITT boundary condition
speci�ed.

� EXT2DP boundary condition called before EXT2DT (not required, but could cause
problems).

106 NASA CR{206600

BOUNDATA KEYWORDS

EXT2DT

2-D Turbomachinery Exit Boundary Condition

2−D Mesh Block #1
(49x17x1)

Specified Exit Static Pressure and Radial
Equilibrium for 2−D Turbomachinery Exit Flow
Requires an EXT2DT Specification
(illustrated in Boundary Data File Format
statements below)

i

r j

x

Radius

Circumferential
Flow Angle

Static
Pressure

Static pressure specified at either
lower or upper "j" boundary
Radial equilibrium equation integrated to
complete exit static pressure specification

Flow

Application
The EXT2DT speci�cation is used to impose a turbomachinery-based exit boundary
condition based on radial equilibrium for 2-D mesh blocks. The example graphic
illustrated above depicts an EXT2DT speci�cation for a 2-D (axisymmetric) ow solution
for a turbomachinery blade row.

Boundary Data File Format
The boundary data �le speci�cation for the mesh surface indicated in the illustrative
graphic for the EXT2DT boundary condition is given below:

EXT2DT 1 1 I I M M L L 49 49 1 17 1 2 1 17 1 2

PEXIT

1.105

or the alternate speci�cation including the mass ow speci�cation:

EXT2DT 1 1 I I M M L L 49 49 1 17 1 2 1 17 1 2

PEXIT EMDOT PRELAX

1.105 13.7 0.001

Note that a complete EXT2DT speci�cation requires two additional lines following the
EXT2DT boundary data �le speci�cation line. Failure to properly specify the data in

NASA CR{206600 107

BOUNDATA KEYWORDS

these additional lines is a common EXT2DT speci�cation error. It should also be
mentioned that EXT2DT also requires proper speci�cation of the LSPEC1 variable for
proper execution.

Description
The EXT2DT keyword speci�es that a turbomachinery-based radial equilibrium exit ow
boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on the 2-D
mesh block speci�ed by LBLOCK1. The EXT2DT boundary condition was speci�cally
designed as an exit ow boundary procedure for 2-D axial and mixed ow turbomachinery
geometries. Pure radial ow turbomachinery exit ow boundaries usually use the
EXT2DG boundary condition. Due to the form of the radial equilibrium equation utilized
in the EXT2DG routine, only cylindrical coordinate solution meshes are permitted to use
this routine. The EXT2DT boundary condition procedure utilizes a combination static
pressure speci�cation and integration of the radial equilibrium equation to de�ne the
static pressure �eld at all points on the boundary surface. As a result of the complexity of
this procedure, several mesh restrictions were imposed to simplify the application of this
approach. The primary assumption is that the integration of the radial equilibrium
equation may be performed along the j coordinate direction of the mesh. Hence, the j
coordinate should be the radial-like direction. A single speci�cation of static pressure is
required at either the maximum or minimum extreme of the j coordinate of the boundary
surface in order to initiate the integration process. The direction of integration, and
location of application of the speci�ed exit static pressure are determined by the LSPEC1
variable in the calling sequence. Refer to EXITT and EXITG for details on specifying the
integration direction and PEXIT, respectively.

An alternate speci�cation is provided for the EXDT2DT boundary speci�cation as
shown in the sample application above. In this case, three values are included following
the original boundary speci�cation line. The alternate speci�cation is provided as a means
of achieving a desired mass ow rate through the bounding surface using the EXT2DT
algorithm. Refer to EXITG for guidelines in correctly specifying the exit mass ow.

Restrictions/Limitations
The EXT2DT boundary condition assumes that the mesh is oriented in such a fashion
that the radial coordinate is de�ned as r =

p
y2 + z2. For axial ow turbomachinery, this

implies that the axis of rotation (centerline) coincides with the x axis. It is also required
that the radial-like direction of the mesh be de�ned by the j coordinate, and is therefore
not valid on a j =constant mesh plane. This is required in order to properly integrate the
radial equilibrium equation to complete the exit static pressure speci�cation. The
EXT2DT boundary speci�cation is restricted to 2-D mesh surfaces.

Common Errors

� Application of EXT2DT to a 3-D mesh system.

� Failure to specify the additional data value PEXIT.

� Improper speci�cation of the alternate (mass ow) iterative scheme.

108 NASA CR{206600

BOUNDATA KEYWORDS

� Radial-like direction of the mesh is not the j coordinate.

� FCART set to 1.0 (EXT2DT requires cylindrical solution procedure to be selected,
FCART=0.0).

� Failure to properly specify the LSPEC1 variable on the boundary data �le
speci�cation line.

� Value of PEXIT is too high (ow cannot get started).

NASA CR{206600 109

BOUNDATA KEYWORDS

FIXED

Fixed Flow Boundary Speci�cation

Primary
Flow

Secondary
Flow

FIXED Boundary Specification
Used to Simulate Secondary
Flow

Application
The FIXED speci�cation is used as a \last resort" boundary speci�cation which hardwires
ow properties into the numerical solution. The application illustrated above indicates an
application of the FIXED boundary speci�cation to provide a direct implementation of the
ow properties of an injection jet into a simple duct ow. The same jet could have been
modeled more e�ectively using alternate boundary conditions, or through the addition of
an additional grid to simulate the jet ow passage; however, for the purposes of
demonstration, and to obtain a solution of this type quickly, the FIXED speci�cation was
used instead.

Boundary Data File Format
The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the FIXED boundary condition are given below:

FIXED 1 1 J J P P I K 1 1 11 21 1 11 11 21 1 11

RO U V W TTOT

0.002 100.0 100.0 0.0 600.0

Note that a complete FIXED speci�cation requires the speci�cation of additional data
beyond the standard boundary speci�cation line.

110 NASA CR{206600

BOUNDATA KEYWORDS

Description
The FIXED statement is used to provide a �xed speci�cation of boundary ow data in the
absence of any other appropriate boundary condition. This routine was provided for those
cases where other boundary conditions either cannot provide the boundary speci�cations
desired, or in those cases where a �xed boundary speci�cation is deemed appropriate. In
most cases, the FIXED speci�cation is undesirable because the boundary condition itself is
perfectly reecting, and will therefore inhibit solution convergence. In addition, the
FIXED speci�cation does not permit interaction between the boundary ow and the
interior ow, which runs contrary to the normal uid dynamics behavior.

A FIXED speci�cation requires two additional lines in addition to the normal
boundary data �le descriptor. The �rst additional line simply contains the labels for the
additional ow variable RO, U, V, W, and TTOT. The next line contains the actual values for
the ow variable speci�cations. The variable RO de�nes the uid density in slugs per cubic
foot. The variables U, V, and W contain the uid velocity components in feet per second for
the x, y, and z coordinate directions for a Cartesian solution mesh block, and the x, r,
and � coordinate directions for a cylindrical solution mesh block, respectively. Finally,
TTOT represents the uid total temperature in degrees Rankine for the boundary
speci�cation. During the application of a FIXED speci�cation, phantom boundary cell
data are set according to the data provided in the extra lines following the boundary data
speci�cation line as shown above. As a result, the data is not necessarily applied at the
boundary, but the inuence of the data is felt just outside the boundary. This
phenomenon is consistent with the behavior of a �nite volume solution algorithm.

Restrictions/Limitations
Data provided in the FIXED speci�cation should represent phantom cell-centered data
and must be dimensionalized as described above.

Common Errors

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,
M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not correctly
de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Failure to provide additional data for FIXED speci�cation.

� FIXED boundary speci�cations for cylindrical solution mesh blocks must use the
cylindrical velocity components.

� FIXED boundary speci�cations for Cartesian solution mesh blocks must use the
Cartesian velocity components.

NASA CR{206600 111

BOUNDATA KEYWORDS

FRE2D

2-D Far Field Flow Boundary Condition

2−D Mesh Block #4
(97x17x1)

Far Field Boundary with Angled
Flow Requires a FRE2D Specification

2−D Mesh Block #3
(97x17x1)

2−D Mesh Block #1
(129x17x1)

2−D Mesh Block #2
(129x17x1)

i

j

x

r

Application
The FRE2D speci�cation is used to impose a 2-D far �eld boundary condition with
uniform far �eld ow properties. The example graphic above illustrates a four-block mesh
system used to predict the axisymmetric ow through a high bypass ducted fan. The two
outer blocks 2 and 4) require a far-�eld boundary condition at the outer boundary (j=17).
The FRE2D boundary speci�cation is used to satisfy the far-�eld ow requirement.

Boundary Data File Format
The boundary data �le speci�cation for the mesh interface indicated in the illustrative
graphic for the FRE2D boundary condition is given below:

FRE2D 2 2 J J M M I K 17 17 1 129 1 2 1 129 1 2 Block 2

PTOT TTOT EMINF ALPHA CHI/AKIN ARIN

1.0 1.0 0.75 0.0 1.0 0.0001

FRE2D 4 4 J J M M I K 17 17 1 97 1 2 1 97 1 2 Block 4

PTOT TTOT EMINF ALPHA CHI/AKIN ARIN

1.0 1.0 0.75 0.0 1.0 0.0001

Note that a complete FRE2D speci�cation requires two additional lines following the
FRE2D boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common FRE2D speci�cation error.

112 NASA CR{206600

BOUNDATA KEYWORDS

Description
The FRE2D statement speci�es that an external, free ow boundary condition is to be
applied to the mesh surface speci�ed by LFACE1 on the 2-D block speci�ed by LBLOCK1.
The FRE2D boundary condition is primarily used for external ow problems at a far �eld
boundary to simulate the e�ects of the atmosphere or other large reservoir with known
properties. The FRE2D procedure utilizes a Reimann invariant formulation to compute
the local ow quantities, and permits both inow and outow through the bounding
surface based on the nature of the local ow with respect to the known far �eld conditions.

This boundary condition requires the speci�cation of additional data, as shown in
the boundary data format descriptor above. The �rst additional line following the FRE2D
speci�cation is assumed to be a label and may contain any information; however, for
consistency it is recommended that the labels PTOT, TTOT, EMINF, and ALPHA be used. The
next line contains the values imposed for the variables PTOT, TTOT, EMINF, and ALPHA,
which represent the far �eld nondimensional reservoir total pressure and total
temperature, along with the Mach number and Cartesian ow angle, respectively, used in
the FRE2D characteristic solution sequence. The value of the PTOT and TTOT are the
desired normalized far �eld total pressure and total temperature, respectively, computed
as described in INLETG.

The variable EMINF represents the far �eld Mach number. The far �eld ow is
always assumed to progress along the positive x axis, and therefore mesh systems should
be generated with this in mind. The variable ALPHA represents the far-�eld Cartesian ow
angle, in degrees, relative to the x axis, with positive angles resulting in far �eld velocity
components in the y coordinate direction. Naturally, poor convergence or solution
divergence can occur if PTOT, TTOT, EMINF, or ALPHA suggest boundary values which are
signi�cantly di�erent from the remainder of the ow�eld. In such cases where this occurs,
it is recommended that the solution be started with more conservative boundary values,
and then restarted using the �nal boundary values.

The additional speci�cations CHI/AKIN and ARIN are used with the one-equation or
two-equation turbulence model and their speci�cation is described in detail in INLETG.

Restrictions/Limitations
The FRE2D boundary speci�cation is not restricted to 2-D mesh surfaces, although for
consistency 3-D mesh surfaces may use the FREE boundary speci�cation.

Common Errors

� Failure to specify the additional data values PTOT, TTOT, EMINF, or ALPHA.

� Failure to generate the mesh with +x as the primary ow direction.

NASA CR{206600 113

BOUNDATA KEYWORDS

FREE

Far Field Flow Boundary Condition

Mesh Block #4
(49x9x13)

Far Field Boundary with Angled
Flow Requires a FREE Specification

Far Field Flow at
Angle of Attack

Mesh Block #3
(49x9x13)

Mesh Block #1
(65x9x13)

Mesh Block #2
(65x9x13)

z

x y

i

k

j

Application
The FREE speci�cation is used to impose a far �eld boundary condition with uniform far
�eld ow properties. The example graphic above illustrates a four block mesh system used
to predict the 3-D ow through a high bypass ducted fan. The two outer blocks 2 and 4
require a far-�eld boundary condition at the outer boundary (j=9). The FREE boundary
speci�cation is used to satisfy the far-�eld ow requirement.

Boundary Data File Format
The boundary data �le speci�cation for the mesh interfaces indicated in the illustrative
graphic for the FREE boundary condition are given below:

FREE 2 2 J J M M I K 9 9 1 65 1 13 1 65 1 13

PTOT TTOT EMINF ALPHA CHI/AKIN ARIN

1.0 1.0 0.75 10.0 1.00 0.0001

FREE 4 4 J J M M I K 9 9 1 49 1 13 1 49 1 13

PTOT TTOT EMINF ALPHA CHI/AKIN ARIN

1.0 1.0 0.75 10.0 1.00 0.0001

Note that a complete FREE speci�cation requires two additional lines following the FREE
boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common FREE speci�cation error.

114 NASA CR{206600

BOUNDATA KEYWORDS

Description
The FREE statement speci�es that an external, free ow boundary condition is to be
applied to the mesh surface speci�ed by LFACE1 on the block speci�ed by LBLOCK1. The
FREE boundary condition is primarily used for external ow problems at a far �eld
boundary to simulate the e�ects of the atmosphere or other large reservoir with known
properties. The FREE procedure utilizes a Reimann invariant formulation to compute the
local ow quantities, and permits both inow and outow through the bounding surface
based on the nature of the local ow with respect to the known far �eld conditions.

This boundary condition requires the speci�cation of additional data, as shown in
the boundary data format descriptor above. The �rst additional line following the FREE
speci�cation is assumed to be a label and may contain any information; however, for
consistency it is recommended that the labels PTOT, TTOT, EMINF, and ALPHA be used. The
next line contains the values imposed for the variables PTOT, TTOT, EMINF, and ALPHA,
which represent the far �eld nondimensional reservoir total pressure and total
temperature, along with the Mach number and Cartesian ow angle, respectively, used in
the FREE characteristic solution sequence. The value of the PTOT and TTOT are the
desired normalized far �eld total pressure and total temperature, respectively, computed
as described in INLETG.

The variable EMINF represents the far �eld Mach number. The far �eld ow is
always assumed to progress primarily along the positive x axis, and therefore mesh
systems should be generated with this in mind. The variable ALPHA represents the far-�eld
Cartesian ow angle, in degrees, relative to the x axis, with positive angles resulting in far
�eld velocity components in the z coordinate direction. The ow angle velocities are
always in the x-z plane and the velocity components in the y coordinate direction are
always zero. If there is outow along the FREE boundary, then some small y component
velocities may occur as a result of extrapolation from the near �eld ow. Naturally, poor
convergence or solution divergence can occur if PTOT, TTOT, EMINF, or ALPHA suggest
boundary values which are signi�cantly di�erent from the remainder of the ow�eld. In
such cases where this occurs, it is recommended that the solution be started with more
conservative boundary values, and then restarted using the �nal boundary values.

The additional speci�cations CHI/AKIN and ARIN are used with the one-equation or
two-equation turbulence model and their speci�cation is described in detail in INLETG.

Restrictions/Limitations
The FREE boundary speci�cation is not restricted to 3-D mesh surfaces, although 2-D
mesh surfaces may use the FRE2D boundary speci�cation for consistency. The far �eld
ow angle must be speci�ed relative to the x axis, and produces additional velocity
components in the z coordinate direction only. Imposed far-�eld velocity components in
the y coordinate direction will always be zero for 3-D meshes.

Common Errors

� Application of FREE to a boundary for which far �eld y coordinate direction
velocity components are required.

NASA CR{206600 115

BOUNDATA KEYWORDS

� Failure to specify the additional data values PTOT, TTOT, EMINF, or ALPHA.

� Failure to generate the mesh with +x as the downstream ow direction.

116 NASA CR{206600

BOUNDATA KEYWORDS

INL2DA

Cartesian Flow Angle Inow Boundary Condition
Procedure

Inlet Boundary with Angled
Flow Requires an
INL2DA Specification

Inlet Flow
Angle

Mesh Block #1
(197x25x1)

x

y

i = 1

i = 197i = 115

i = 83
i

j

Application
The INL2DA speci�cation is used to impose a Cartesian ow angle inow boundary
condition with uniform ow properties at a local mesh surface. The illustrative graphic
above depicts a single-block mesh system for an isolated airfoil geometry. The INL2DA
speci�er is utilized at the inlet of mesh block 1 to set the angled inow necessary to
simulate angle of attack.

Boundary Data File Format
The boundary data �le speci�cation for the mesh boundaries indicated in the illustrative
graphic for the INL2DA boundary condition are given below:

INL2DA 1 1 J J M M I K 25 25 83 115 1 2 83 115 1 2

PTOT TTOT ALPHA CHI/AKIN ARIN

1.0 1.0 20.0 1.00 0.0001

Note that a complete INL2DA speci�cation requires two additional lines following the
INL2DA boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common INL2DA speci�cation error.

Description
The INL2DA keyword speci�es that a uniform property ow angle inow boundary

NASA CR{206600 117

BOUNDATA KEYWORDS

condition is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed
by LBLOCK1. INL2DA is valid for Cartesian solution meshes. The INL2DA procedure
utilizes a Reimann invariant formulation to compute inow velocities based on a speci�ed
upstream reservoir total pressure and total temperature, and a single Cartesian ow angle
as shown in the illustrative graphic, above. Included in the INL2DA procedure is a special
correction scheme which forces the ow to pass into the ow domain.

This boundary condition requires the speci�cation of additional data, as shown in
the boundary data format descriptor above. The �rst additional line following the
INL2DA speci�cation is assumed to be a label and may contain any information; however,
for consistency it is recommended that the labels PTOT, TTOT, and ALPHA be used. The
next line contains the values imposed for the variables PTOT, TTOT, and ALPHA which
represent the upstream reservoir total pressure, total temperature, and Cartesian ow
angle, respectively, used in the INL2DA characteristic solution sequence. The value of the
PTOT and TTOT are the desired normalized far �eld total pressure and total temperature,
respectively, computed as described in INLETG.

The variable ALPHA represents the ow angle in degrees referenced to the x axis. For
2-D applications, positive ow angles generate components of the ow in the positive y
direction, and inlet velocity component in the z direction are set to zero. Values of ALPHA
must lie between +/- 90 degrees. Naturally, poor convergence or solution divergence can
occur if PTOT or TTOT suggest boundary values which are signi�cantly di�erent from the
remainder of the ow�eld, or if ALPHA is very large. In cases where this occurs, it is
recommended that the solution be started with more conservative boundary values, and
then restarted using the �nal boundary values.

The additional speci�cations CHI/AKIN and ARIN are used with the one-equation or
two-equation turbulence model and their speci�cation is described in detail in INLETG.

Restrictions/Limitations
The INL2DA boundary speci�cation is applied to 2-D mesh surface. The angle speci�ed
by ALPHA is assumed to be in the positive y coordinate. An example of this type of
application is for a planar cascade ow where x is the primary ow direction, and the
inow is at an angle of 20 degrees relative to the x axis, thus resulting in a y component of
velocity (2-D only). The angle of the velocity components speci�ed by the INL2DA
procedure must always be referenced to the x coordinate axis, and it is left to the user to
generate a mesh which is consistent with this feature.

Common Errors

� Application of INL2DA to a cylindrical mesh system.

� Application of INL2DA to a 2-D mesh boundary for which non-zero z component
velocities are required.

� Failure to specify the additional data values PTOT, TTOT, or ALPHA.

118 NASA CR{206600

BOUNDATA KEYWORDS

INL2DT

2-D Turbomachinery Inow Boundary Condition

2−D Mesh Block #1
(49x17x1)

Radial Variation of Turbomachinery Inlet
Flow Variables Requires an INL2DT Specification
(illustrated in Boundary Data File Format
statements below) i

j

x

Radius

Radius

Total
Pressure

Circumferential
Flow Angle

Radial
Flow Angle

Total
Temperature

Flow

r

Application
The INL2DT speci�cation is used to impose an inow boundary condition with radially
varying ow properties for 2-D axisymmetric mesh systems. The example graphic
illustrated above depicts an EXT2DT speci�cation for a 2-D (axisymmetric) ow solution
for a turbomachinery blade row.

Boundary Data File Format
The boundary data �le speci�cation for the mesh surface indicated in the illustrative
graphic for the INL2DT boundary condition is given below:

INL2DT 1 1 I I P P J K 1 1 1 17 1 2 1 17 1 2

NDATA

7

RAD PTOT TTOT BETAR BETAT CHI

0.20 1.01 0.98 5.0 5.1 1.0

0.25 1.01 0.99 4.0 5.7 1.0

0.30 1.00 1.00 3.0 6.3 1.0

0.35 0.99 1.01 2.5 6.8 1.0

0.40 0.97 1.00 2.0 7.4 1.0

0.45 0.96 1.01 1.0 8.0 2.0

0.50 0.95 1.01 0.0 7.7 5.0

NASA CR{206600 119

BOUNDATA KEYWORDS

A complete INL2DT speci�cation requires at least six additional lines (de�ning at least 3
points on the inlet data distribution) following the INL2DT boundary data �le
speci�cation line. Failure to properly specify the data in these additional lines is a
common INL2DT speci�cation error.

Description
The INL2DT statement speci�es that a turbomachinery-based radially varying inow
boundary condition is to be applied to the 2-D mesh surface speci�ed by LFACE1 on the
block speci�ed by LBLOCK1. The INL2DT boundary condition was speci�cally designed as
an inow boundary procedure for axial and mixed ow axisymmetric turbomachinery
geometries. The INL2DT procedure utilizes a Reimann invariant formulation to compute
inow velocities based on a speci�ed radial variation in ow properties (upstream reservoir
total pressure, total temperature, radial ow angle, and circumferential ow angle).
Included in the INL2DT procedure is a special correction scheme which forces the ow to
pass into the ow domain.

This boundary condition requires the speci�cation of additional data. The details of
creating the inlet radial distribution table is outlined in INLETT.

Restrictions/Limitations
The INL2DT boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial ow turbomachinery, this

implies that the axis of rotation (or the centerline) coincides with the x axis. It is also
required that the radial-like direction of the mesh be de�ned by the j coordinate. The
INL2DT boundary speci�cation is restricted to 2-D mesh surfaces.

Common Errors

� Application of INL2DT to a 3-D mesh system.

� Failure to specify the additional data values NDATA, PTOT, TTOT, BETAR, or BETAT.

� Radial-like direction of the mesh is not the j coordinate.

� NDATA less than 3, resulting in job termination.

� BETAR and/or BETAT orientation incorrectly interpreted.

� RAD, PTOT, and/or TTOT improperly normalized.

� Mesh/geometry not de�ned with the x axis as the centerline.

120 NASA CR{206600

BOUNDATA KEYWORDS

INLETA

Cartesian Flow Angle Inow Boundary Condition
Procedure

Mesh Block #4
(49x9x13)

Inlet Boundary with Angled
Flow Requires an
INLETA Specification

Inlet Flow at
Angle of Attack

Mesh Block #3
(49x9x13)

Mesh Block #1
(65x9x13)

Mesh Block #2
(65x9x13)

z

x

y

i

k

j

Application
The INLETA speci�cation is used to impose a Cartesian ow angle inow boundary
condition with uniform ow properties at a local mesh surface. The illustrative graphic
above depicts a four block mesh system for a turbofan engine geometry. The INLETA
speci�er is utilized at the inlet of mesh blocks 1 and 2 to set the angled inow necessary to
simulate angle of attack.

Boundary Data File Format
The boundary data �le speci�cation for the mesh boundaries indicated in the illustrative
graphic for the INLETA boundary condition are given below:

INLETA 1 1 I I P P J K 1 1 1 9 1 13 1 9 1 13

PTOT TTOT ALPHA CHI/AKIN ARIN

1.0 1.0 20.0 1.00 0.0001

INLETA 2 2 I I P P J K 1 1 1 9 1 13 1 9 1 13

PTOT TTOT ALPHA CHI/AKIN ARIN

1.0 1.0 20.0 1.00 0.0001

Note that a complete INLETA speci�cation requires two additional lines following the

NASA CR{206600 121

BOUNDATA KEYWORDS

INLETA boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common INLETA speci�cation error.

Description
The INLETA keyword speci�es that a uniform property ow angle inow boundary
condition is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed
by LBLOCK1. INLETA is valid for both cylindrical and Cartesian solution meshes (see the
description of the input variable FCART). The INLETA procedure utilizes a Reimann
invariant formulation to compute inow velocities based on a speci�ed upstream reservoir
total pressure and total temperature, and a single Cartesian ow angle as shown in the
illustrative graphic, above. Included in the INLETA procedure is a special correction
scheme which forces the ow to pass into the ow domain.

This boundary condition requires the speci�cation of additional data, as shown in
the boundary data format descriptor above. The �rst additional line following the
INLETA speci�cation is assumed to be a label and may contain any information; however,
for consistency it is recommended that the labels PTOT, TTOT, and ALPHA be used. The
next line contains the values imposed for the variables PTOT, TTOT and ALPHA which
represent the upstream reservoir total pressure, total temperature, and Cartesian ow
angle, respectively, used in the INLETA characteristic solution sequence. The value of the
PTOT and TTOT are the desired normalized far �eld total pressure and total temperature,
respectively, computed as described in INLETG.

The variable ALPHA represents the ow angle in degrees referenced to the x axis. For
3-D applications, positive ow angles generate components of the ow in the positive z
direction, and inlet velocity component in the y direction are set to zero. For 2-D
applications, positive ow angles generate components of the ow in the positive y
direction, and inlet velocity component in the z direction are set to zero. Values of ALPHA
must lie between +/- 90 degrees. Naturally, poor convergence or solution divergence can
occur if PTOT or TTOT suggest boundary values which are signi�cantly di�erent from the
remainder of the ow�eld, or if ALPHA is very large. In cases where this occurs, it is
recommended that the solution be started with more conservative boundary values, and
then restarted using the �nal boundary values.

The additional speci�cations CHI/AKIN and ARIN are used with the one-equation or
two-equation turbulence model and their speci�cation is described in detail in INLETG.

Restrictions/Limitations
The INLETA boundary speci�cation may be applied to either 3-D or 2-D mesh surfaces.
For 2-D applications, the angle speci�ed by ALPHA is assumed to be in the positive y
coordinate. The angle of the velocity components speci�ed by the INLETA procedure
must always be referenced to the x coordinate axis, and it is left to the user to generate a
mesh which is consistent with this feature.

Common Errors

� Application of INLETA to a 3-D mesh boundary for which non-zero y component

122 NASA CR{206600

BOUNDATA KEYWORDS

velocities are required.

� Application of INLETA to a 2-D mesh boundary for which non-zero z component
velocities are required.

� Failure to specify the additional data values PTOT, TTOT, or ALPHA.

NASA CR{206600 123

BOUNDATA KEYWORDS

INLETG

Generic Inow Boundary Condition

Mesh Block #1
(49x33x33)

Duct Inlet with Uniform
Normal Flow Requires an
INLETG Specification

i

k

j

Flow

Application
The INLETG speci�cation is used to impose a generic inow boundary condition with
uniform ow properties where the default inow velocity is normal to the local mesh
surface. Angle speci�cation can be added to modify the injection angle of the inow.

Boundary Data File Format
The boundary data �le speci�cation for the mesh interface indicated in the illustrative
graphic for the INLETG boundary condition is given below:

INLETG 1 1 I I P P J K 1 1 1 33 1 33 1 33 1 33

PTOT TTOT CHI/AKIN ARIN ANGLE1 ANGLE2 EMDOT PRELAX

1.0 1.0 1.00 0.0001 0.0 -20.0 5.34 0.1

Note that a complete INLETG speci�cation requires two additional lines following the
INLETG boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common INLETG speci�cation error. Of the additional variables
speci�ed, only PTOT and TTOT are required.

124 NASA CR{206600

BOUNDATA KEYWORDS

Description
The INLETG statement speci�es that a generic, uniform normal inow boundary
condition is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed
by LBLOCK1. The INLETG boundary condition should be applied for those cases where
any other \specialized" inow boundary condition (i.e, INLETR, INLETT) does not
apply. The INLETG boundary condition is also likely to be somewhat more e�cient
computationally than the other inow boundary condition procedures, at the expense of
some physical simpli�cation. INLETG may be utilized on either cylindrical or Cartesian
solution meshes (see the description of the input variable FCART). The INLETG
procedure utilizes a Reimann invariant formulation to compute inow velocities based on
a speci�ed upstream reservoir total pressure and total temperature. The velocity
components at an INLETG boundary are always computed to be normal (no transverse
velocity components) to the local cell face at which the procedure is applied. Included in
the INLETG procedure is a special correction scheme which forces the ow to pass into
the ow domain.

This boundary condition requires the speci�cation of additional data. The �rst
additional line following the INLETG speci�cation is assumed to be a label. The next line
contains the values imposed for the variables PTOT, TTOT, CHI/AKIN, and ARIN, which
represent the upstream reservoir total pressure, total temperature, and turbulence model
quantities, respectively. The value of the PTOT variable is the desired normalized upstream
total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total temperature
computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and TREF. Values
of PTOT and TTOT < 0.0 are not permitted. Naturally, poor convergence or solution
divergence can occur if PTOT or TTOT suggest boundary values which are signi�cantly
di�erent from the remainder of the ow�eld. In such cases where this occurs, it is
recommended that the solution be started with more conservative boundary values, and
then restarted using the �nal boundary values.

The variable CHI is only used when the one-equation turbulence model is enabled
(see F1EQ). When enabled, the variable CHI speci�es the nondimensional inlet turbulence
level (�) used in the Spalart-Allmaras model. Details of this model are included in
Appendix A. Normally this value should be set to 1.0 for general fully turbulent ow;
Larger values of CHI can be used to simulate higher turbulence levels.

The variables AKIN and ARIN are only used when the one-equation (k �R)
turbulence model is enabled (see F2EQ). When enabled, the variable AKIN represents the
value of the nondimensional freestream turbulence kinetic energy de�ned by k=V 2

ref where
k is the freestream turbulent kinetic energy and Vref is the reference velocity de�ned byp
RrefTref . Here Rref is the gas constant. The variable ARIN represent the so-called

freestream turbulence Reynolds number and is calculated as R/VrefLref , where Lref is

NASA CR{206600 125

BOUNDATA KEYWORDS

the reference length de�ned by the input variable DIAM. Additional details covering the
two-equation model are included in Appendix A.

By default, the inow is constrained to be normal to the boundary; however, this
injection angle can be speci�ed using the ANGLE1 and ANGLE2 variables. These angle
speci�cations are relative to the local mesh index direction and not to the global
coordinate system. ANGLE1 and ANGLE2 prescribe the angles with respect to the remaining
two mesh indices in \natural" order, respectively (e.g., if the INLETG surface is a j
constant grid plane, then ANGLE1 and ANGLE2 would be in the i and k directions,
respectively.). The default vales for both the angle speci�cations is 0.0 degrees (normal to
the surface). This feature is extremely useful in modeling injected cooling ow along an
airfoil surface.

A mass ow speci�cation similar to that used in EXITG is also available with
INLETG. Whereas the EXITG boundary condition iteratively altered the exit static
pressure to regulate mass ow, the INLETG will alter the inlet total pressure each
iteration until the prescribed mass ow is reached. EMDOT represents the desired mass ow
rate through the bounding surface in pounds mass, and PRELAX is a relaxation factor to
stabilize the iterative process (values may range from 0.0 to 1.0, though poor convergence
is likely for values larger than 0.1). In order to use the mass ow speci�cation without
employing the angled ow injection, the user needs to remember to assign place holders
for ANGLE1 and ANGLE2 equal to 0.0 prior to specifying the mass ow value and relaxation
parameter.

Restrictions/Limitations
The INLETG boundary speci�cation is applicable 2-D and 3-D mesh surfaces.

Common Errors

� Application of INLETG to a boundary for which transverse inow velocity
components are required.

� Failure to specify the additional data values PTOT or TTOT.

126 NASA CR{206600

BOUNDATA KEYWORDS

INLETN

Non-Reecting Unsteady Inow Boundary Condition

Mesh Block #1
(49x33x33)

Time−Dependent Solution
for Duct Inlet Requires an
INLETN Specification

i

k

j

Flow

Application
The INLETN speci�cation is used to impose a non-reecting inow boundary condition
for time-dependent ow calculations. This boundary condition is utilized for
time-dependent ows where spurious numerical reections from other boundary
algorithms are undesirable.

Boundary Data File Format
The boundary data �le speci�cation for the mesh interface indicated in the illustrative
graphic for the INLETN boundary condition is given below:

INLETN 1 1 I I P P J K 1 1 1 33 1 33 1 33 1 33

Description
The INLETN statement speci�es that a generic, non-reecting inow boundary condition
is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed by

NASA CR{206600 127

BOUNDATA KEYWORDS

LBLOCK1. The INLETN boundary condition should only be applied for time-dependent
ow calculations where spurious numerical reections such as those normally expected
from other boundary speci�cations are undesirable. INLETN may be utilized on either
cylindrical or Cartesian solution meshes. The INLETN procedure utilizes a
characteristic-based formulation to compute inow velocities based on local ow
conditions only.

Restrictions/Limitations
The INLETN boundary speci�cation is not restricted to 3-D mesh surfaces but should
only be applied for time-dependent ow calculations where a non-reecting inow
boundary is desired.

Common Errors

� Application of INLETN for a steady-state solution.

128 NASA CR{206600

BOUNDATA KEYWORDS

INLETR

Radial Flow Turbomachinery Inow Boundary
Condition

Mesh Block #1
(65x13x17)

Axial Variation of Radial Turbomachinery Inlet
Flow Variables Requires an INLETR Specification
(illustrated in Boundary Data File Format
statements below)

Circumferential
Flow Angle

Flow

ik

j

Axial
Flow Angle

Total
Temperature

Axial
Distance

Total
Pressure

x

y

z

Application
The INLETR speci�cation is used to impose an inow boundary condition with axially
varying ow properties for radial ow turbomachinery. The example graphic above
illustrates adjacent passages of a mesh system designed to predict the ow through a
radial di�user. The inlet boundary is a radial surface of revolution with properties which
vary in the axial direction, and therefore INLETR is used to supply the desired ow
characteristics at this boundary.

Boundary Data File Format
The boundary data �le speci�cation for the mesh surface indicated in the illustrative
graphic for the INLETR boundary condition is given below:

INLETR 1 1 I I P P J K 1 1 1 13 1 17 1 13 1 17

NDATA

4

AXIAL PTOT TTOT BETAX BETAT

0.1 0.99 0.99 5.0 -73.3

0.2 0.98 1.01 4.0 -75.8

0.3 0.97 1.00 3.0 -77.2

0.4 0.96 1.01 2.0 -79.0

NASA CR{206600 129

BOUNDATA KEYWORDS

A complete INLETR speci�cation requires at least six additional lines (de�ning at least 3
points on the inlet data distribution) following the INLETR boundary data �le
speci�cation line. Failure to properly specify the data in these additional lines is a
common INLETR speci�cation error.

Description
The INLETR statement speci�es that a radial ow turbomachinery inlet ow boundary
condition with axially varying ow properties is to be applied to the mesh surface
speci�ed by LFACE1 on the block speci�ed by LBLOCK1. The INLETR boundary condition
was speci�cally designed as an inow boundary procedure for pure radial ow
turbomachinery geometries. The INLETR procedure utilizes a Reimann invariant
formulation to compute inow velocities based on a speci�ed axial variation in ow
properties (upstream reservoir total pressure,total temperature, axial ow angle, and
circumferential ow angle). Included in the INLETR procedure is a special correction
scheme which forces the ow to pass into the ow domain.

This boundary condition requires the speci�cation of additional data, as shown in
the boundary data format descriptor above. The �rst additional line following the
INLETR speci�cation is assumed to be a label. The line following the NDATA label
contains the number of axial data points which will be used to specify the desired axial
variation of properties at the inow boundary. At least 3 axial data locations must be
speci�ed to use the INLETR boundary condition. The third line following the INLETR
speci�er is again a label which outlines the variables AXIAL, PTOT, TTOT, BETAX and
BETAT. The remaining NDATA lines contain the numeric information which de�nes the axial
variation of the ow properties speci�ed by these variables.

The variable AXIAL is the axial coordinate (x) at which the data is speci�ed. This
value should be nondimensionalized in the same manner as the mesh is
nondimensionalized. This implies that the AXIAL variable, when multiplied by the input
variable DIAM will result in the true geometric measurement in feet. Due to the
interpolation procedures which will ultimately be performed on the NDATA lines of radial
inow data, it is essential that the axial locations be speci�ed in a monotonic (constantly
increasing) fashion. The variables PTOT and TTOT represent the local upstream reservoir
total pressure and total temperature, respectively, used in the INLETR characteristic
solution sequence. The value of the PTOT and TTOT are the desired normalized far �eld
total pressure and total temperature, respectively, computed as described in INLETG.
The variables BETAX and BETAT represent the local axial and circumferential ow angles
expressed in degrees according to the coordinate orientation de�ned in Figure 3.12.

Naturally, poor convergence or solution divergence can occur if any of the values of
PTOT, TTOT, BETAX, or BETAT suggest boundary values which are signi�cantly di�erent
from the remainder of the ow�eld, or if the axial variation of these values is excessively
large. In such cases where this occurs, it is recommended that the solution be started with
more conservative boundary values, and then restarted using the �nal boundary values.

Restrictions/Limitations
The INLETR boundary condition assumes that the mesh is oriented in such a fashion that

130 NASA CR{206600

BOUNDATA KEYWORDS

x

r
r

VVr

Vx

BETAX (+)

BETAT (−)

Axial Flow Angle Circumferential Flow Angle

333
333
333
333
333
333

3333333
3333333
3333333
3333333
3333333
3333333
3333333

333333333
333333333
333333333
333333333

333333
333333
333333
333333
333333
333333
333333
333333

θ

Vr V

Vθ

Figure 3.12: ADPAC INLETR boundary speci�cation ow angle reference

the radial coordinate is de�ned as r =
p
y2 + z2. For radial ow turbomachinery, this

implies that the axis of rotation (or the centerline) coincides with the x axis. It is also
required that the axial-like direction of the mesh be de�ned by the j coordinate.

Common Errors

� Failure to specify the additional data values NDATA, AXIAL, PTOT, TTOT, BETAX, or
BETAT.

� Axial-like direction of the mesh is not the j coordinate.

� NDATA less than 3, resulting in job termination.

� BETAX and/or BETAT orientation incorrectly interpreted.

� AXIAL, PTOT, and/or TTOT improperly normalized.

� Mesh/geometry not de�ned with the x axis as the centerline.

NASA CR{206600 131

BOUNDATA KEYWORDS

INLETT

Turbomachinery Inow Boundary Condition

Mesh Block #1
(49x17x17)

Radial Variation of Turbomachinery Inlet
Flow Variables Requires an INLETT Specification
(illustrated in Boundary Data File Format
statements below)

ik

j

xy

z

Radius

RadiusRadius

Radius

Total
Pressure

Circumferential
Flow Angle

Radial
Flow Angle

Total
Temperature

Flow

Application
The INLETT speci�cation is used to impose an inow boundary condition with radially
varying ow properties. The illustrative graphic above depicts an application of the
INLETT inow boundary condition for an H-type mesh for a turbomachinery fan rotor
blade passage. The INLETT speci�cation provides the radial variation of ow properties
at the inow boundary resulting from experimental conditions, upstream blade rows, or
other known inlet property variation.

Boundary Data File Format
The boundary data �le speci�cation for the mesh surface indicated in the illustrative
graphic for the INLETT boundary condition is given below:

INLETT 1 1 I I P P J K 1 1 1 17 1 17 1 17 1 17

NDATA

7

RAD PTOT TTOT BETAR BETAT CHI

0.20 1.01 0.98 5.0 5.1 1.0

0.25 1.01 0.99 4.0 5.7 1.0

0.30 1.00 1.00 3.0 6.3 1.0

0.35 0.99 1.01 2.5 6.8 1.0

132 NASA CR{206600

BOUNDATA KEYWORDS

0.40 0.97 1.00 2.0 7.4 1.0

0.45 0.96 1.01 1.0 8.0 2.0

0.50 0.95 1.01 0.0 7.7 5.0

A complete INLETT speci�cation requires six or more additional lines (de�ning at least 3
points on the inlet data distribution) following the INLETT boundary data �le
speci�cation line. Failure to properly specify the data in these additional lines is a
common INLETT speci�cation error.

Description
The INLETT statement speci�es that a turbomachinery-based radially varying inow
boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on the block
speci�ed by LBLOCK1. The INLETT boundary condition was speci�cally designed as an
inow boundary procedure for axial and mixed ow turbomachinery geometries. The
INLETT boundary procedure is only valid on mesh systems employing the cylindrical
solution algorithm (see input variable FCART). The INLETT procedure utilizes a
Reimann invariant formulation to compute inow velocities based on a speci�ed radial
variation in ow properties (upstream reservoir total pressure, total temperature, radial
ow angle, and circumferential ow angle). Included in the INLETT procedure is a special
correction scheme which forces the ow to pass into the ow domain.

This boundary condition requires the speci�cation of additional data, as shown in
the boundary data format descriptor above. The �rst additional line following the
INLETT speci�cation is assumed to be a label. The line following the NDATA label
contains the number of radial data points which will be used to specify the desired radial
variation of properties at the inow boundary. At least 3 radial data locations must be
speci�ed to use the INLETT boundary condition. The third line following the INLETT
speci�er is again a label which outlines the variables RAD, PTOT, TTOT, BETAR, BETAT,
and optionally CHI. The remaining NDATA lines contain the numeric information which
de�nes the radial variation of the ow properties speci�ed by these variables.

The variable RAD is the radius at which the data is speci�ed. This value should be
nondimensionalized in the same manner as the mesh is nondimensionalized. This implies
that the RAD variable, when multiplied by the input variable DIAM will result in the true
geometric measurement in feet. Due to the interpolation procedures which will ultimately
be performed on the NDATA lines of radial inow data, it is essential that the radial
variations be speci�ed from the inner to the outer radius in a monotonic (constantly
increasing) fashion. The variables PTOT and TTOT represent the local upstream reservoir
total pressure and total temperature, respectively, used in the INLETT characteristic
solution sequence. The value of the PTOT and TTOT are the desired normalized far �eld
total pressure and total temperature, respectively, computed as described in INLETG.
The variables BETAR and BETAT represent the local radial and circumferential ow angles
expressed in degrees according to the coordinate orientation de�ned in Figure 3.13.

Naturally, poor convergence or solution divergence can occur if any of the values of
PTOT, TTOT, BETAR, or BETAT suggest boundary values which are signi�cantly di�erent
from the remainder of the ow�eld, or if the radial variation of these values is excessively
large. In cases where this occurs, it is recommended that the solution be started with

NASA CR{206600 133

BOUNDATA KEYWORDS

V
Vr

BETAR (+)

BETAT (−)

Radial Flow Angle Circumferential Flow Angle

Vx

x

r

V
Vx

Vθx

θ

Figure 3.13: ADPAC INLETT boundary speci�cation ow angle reference

more conservative boundary values, and then restarted using the �nal boundary values.

The additional speci�cation CHI is used with the one-equation turbulence model and
allows for a radial pro�le of turbulence to be speci�ed. The speci�cs of how CHI is used is
described in detail in INLETG.

Restrictions/Limitations
The INLETT boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial ow turbomachinery, this

implies that the axis of rotation (centerline) coincides with the x axis. It is also required
that the radial-like direction of the mesh be de�ned by the j coordinate. The INLETT
boundary speci�cation is restricted to 3-D mesh surfaces.

Common Errors

� Application of INLETT to a 2-D mesh system.

� Failure to specify the additional data values NDATA, PTOT, TTOT, BETAR, or BETAT.

� Radial-like direction of the mesh is not the j coordinate.

� NDATA less than 3, resulting in job termination.

� BETAR and/or BETAT orientation incorrectly interpreted.

� RAD, PTOT, and/or TTOT improperly normalized.

� Mesh/geometry not de�ned with the x axis as the centerline.

134 NASA CR{206600

BOUNDATA KEYWORDS

INLETX

Non-Reecting Steady State Turbomachinery Inow
Boundary Condition

Mesh Block #1
(49x17x17)

Radial Variation of Turbomachinery Inlet
Flow Variables for Non−reflecting
Boundary Requires an INLETX Specification

ik

j

xy

z

Radius

RadiusRadius

Radius

Total
Pressure

Circumferential
Flow Angle

Radial
Flow Angle

Total
Temperature

Flow

Application
The INLETX speci�cation is used to impose a non-reecting turbomachinery inow
boundary condition with radially varying ow properties. The illustrative graphic above
depicts an application of the INLETX inow boundary condition for an H-type mesh for a
turbomachinery fan rotor blade passage. The INLETX speci�cation provides the radial
variation of ow properties at the inow boundary resulting from experimental conditions,
upstream blade rows, or other known inlet property variation.

Boundary Data File Format
The boundary data �le speci�cation for the mesh surface indicated in the illustrative
graphic for the INLETX boundary condition is given below:

INLETX 1 1 I I P P J K 1 1 1 17 1 17 1 17 1 17

NDATA

7

RAD PTOT TTOT BETAR BETAT CHI

0.20 1.01 0.98 5.0 5.1 1.0

0.25 1.01 0.99 4.0 5.7 1.0

0.30 1.00 1.00 3.0 6.3 1.0

NASA CR{206600 135

BOUNDATA KEYWORDS

0.35 0.99 1.01 2.5 6.8 1.0

0.40 0.97 1.00 2.0 7.4 1.0

0.45 0.96 1.01 1.0 8.0 1.0

0.50 0.95 1.01 0.0 7.7 1.0

A complete INLETX speci�cation requires six or more additional lines (de�ning at least 3
points on the inlet data distribution) following the INLETX boundary data �le
speci�cation line. Failure to properly specify the data in these additional lines is a
common INLETX speci�cation error.

Description
The INLETX statement speci�es that a non-reecting turbomachinery-based radially
varying inow boundary condition is to be applied to the mesh surface speci�ed by
LFACE1 on the block speci�ed by LBLOCK1. The INLETX boundary condition was
speci�cally designed as a non-reecting inow boundary procedure for steady-state
analysis of axial and mixed ow turbomachinery geometries. As such, the INLETX
boundary procedure is only valid on mesh systems employing the cylindrical solution
algorithm (see input variable FCART). The INLETX procedure utilizes a
characteristic-based ow decomposition to compute inow velocities based on a speci�ed
radial variation in ow properties (upstream reservoir total pressure, total temperature,
radial ow angle, and circumferential ow angle). Due to the non-reective nature of the
boundary procedure, the circumferential average of the numerical solution at each radial
station matches the speci�cations imposed by the INLETX speci�cation (rather than a
point-by-point matching). This feature permits circumferential variation of ow properties
across the boundaries, where other boundary procedures do not.

This boundary condition requires the speci�cation of additional data. The details of
creating the inlet radial distribution table is outlined in INLETT, except that the variable
CHI is not currently supported under INLETX.

Restrictions/Limitations
The INLETX boundary condition assumes that the mesh is oriented in such a fashion that
the radial coordinate is de�ned as r =

p
y2 + z2. For axial ow turbomachinery, this

implies that the axis of rotation (centerline) coincides with the x axis. It is also required
that the radial-like direction of the mesh be de�ned by the j coordinate. This implies that
INLETX can only be applied to either constant i or constant k index mesh surfaces.
INLETX is only valid for steady- state solutions (the INLETN boundary procedure is
available for time-dependent non-reecting inow boundaries).

Common Errors

� Application of INLETX to a Cartesian mesh solution.

� Failure to specify the additional data values NDATA, PTOT, TTOT, BETAR, or BETAT.

� Radial-like direction of the mesh is not the j coordinate.

136 NASA CR{206600

BOUNDATA KEYWORDS

� Application of INLETX to a constant j mesh surface.

� NDATA less than 3, resulting in job termination.

� BETAR and/or BETAT orientation incorrectly interpreted.

� RAD, PTOT, and/or TTOT improperly normalized.

� Mesh/geometry not de�ned with the x axis as the centerline.

� Application of INLETX for a time-dependent solution.

� Speci�cation of CHI �eld has no e�ect currently.

NASA CR{206600 137

BOUNDATA KEYWORDS

KIL2D

2-D Solution Kill Routine

2−D Mesh Block #1
(93x51x1)

Internal Mesh Obstruction
Requires a KIL2D Specification

i

j

Flow

Predicted Mach
Number Contours

Application
The KIL2D keyword is a tool to e�ectively neutralize or \kill" the time-marching solution
over a segment of the computational domain for a two-dimensional mesh. The example
graphic above illustrates a single block 2-D mesh system used to predict the ow through
a converging/diverging nozzle system with a square-edged obstruction. Rather than
construct a multiple block mesh system to treat this case (whereby the obstruction is
essentially gridded as block boundaries), the KIL2D speci�cation is used to neutralize the
advancing solution within the obstruction, and boundary conditions are applied along the
surface of the obstruction to predict this ow.

Boundary Data File Format
The boundary data �le speci�cation for the mesh interface indicated in the illustrative
graphic for the KIL2D boundary condition is given below:

KIL2D 1 1 I I M M L L 40 60 21 31 1 2 21 31 1 2

LSTART LEND

40 60

Note that a complete KIL2D speci�cation requires two additional lines following the
KIL2D boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common KIL2D speci�cation error.

Description

138 NASA CR{206600

BOUNDATA KEYWORDS

In cases where a portion of a 2-D mesh does not represent a valid ow region, the KIL2D
speci�cation can be used, in conjunction with boundary conditions speci�ed about the
region to be \killed", to e�ectively remove a portion of a given mesh block from the
computational domain. The �gure depicts a single block mesh for the ow through a
simple nozzle. Suppose that for whatever reason, the user wished to remove an internal
rectangular portion of the mesh (as if there were an obstruction placed in the owpath).
This could be accomplished by subdividing the original mesh into several smaller pieces,
and applying the appropriate boundary conditions along the outer boundaries of each
block. This same con�guration could also be modeled using the original mesh by invoking
the KIL2D speci�cation for the points inside the obstruction, followed by an application of
the proper boundary speci�cations along the obstruction internally on the single-block
mesh.

This boundary condition requires the speci�cation of additional data. The variable
following the label LSTART indicates the starting index of the LFACE1 coordinate direction
(in the example above, this would be the i coordinate direction) for the region to be
\killed". The variable following the label LEND indicates the �nal index in the LFACE1
coordinate direction (again, the i coordinate in the example above) for the region to be
\killed". The remaining coordinate indices for the region to be \killed" are determined by
the variables M1LIM1, M1LIM2 for the j coordinate direction and N1LIM1, and N1LIM2 for
the k coordinate direction. The additional speci�cation of the LSTART, LEND variables
imply that the variables L1LIM, L2LIM are not used in this speci�cation.

The KIL2D routine functions by constantly resetting the ow variables inside the
region to be killed to the initial values speci�ed by the RMACH input variable. So, in
e�ect, the solution is still being performed in the region to be killed, but the updated
results are constantly reset to a uniform ow value. This routine is not without
drawbacks. First of all, although the mesh points are e�ectively neutralized by the KIL2D
speci�cation, other routines such as the residual smoothing algorithm are unaltered, and
under certain circumstances, this may cause poor convergence. It is also possible that
divergence may occur within the \killed" cells in spite of the resetting procedure. The
best advice is to manipulate block structures to eliminate the need for the use of the
KIL2D routine, but the user should be aware that under dire circumstances this facility is
available. The KIL2D speci�cation should be given prior to any other boundary
conditions to avoid over-writing previously speci�ed boundary speci�cations.

Restrictions/Limitations
The KIL2D boundary speci�cation is restricted to 2-D mesh surfaces (3-D mesh surfaces
should use the KILL boundary speci�cation).

Common Errors

� Application of KIL2D to a 3-D mesh system.

� Poor convergence due to residual smoothing across a \killed" region (The residual
smoothing operator can be turned o� through the RESID input variable, although
the time step must be restricted (see variable CFL) to maintain numerical stability).

NASA CR{206600 139

BOUNDATA KEYWORDS

� Failure to specify the additional data values LSTART, LEND.

140 NASA CR{206600

BOUNDATA KEYWORDS

KILL

Solution Kill Routine

Mesh Block #1
(93x25x17)

Internal Mesh Obstruction
Requires a KILL Specification

i

j

k

Application
The KILL keyword is a tool to e�ectively neutralize or \kill" the time-marching solution
over a segment of the computational domain for a three-dimensional mesh. The example
graphic above illustrates a single block 3-D O-type mesh system used to predict the ow
through a turbomachinery compressor rotor blade passage with a surface-mounted
square-edged obstruction. Rather than construct a multiple block mesh system to treat
this case (whereby the obstruction is essentially gridded as block boundaries), the KILL
speci�cation is used to neutralize the advancing solution within the obstruction, and
boundary conditions are applied along the surface of the obstruction to predict this ow.

Boundary Data File Format
The boundary data �le speci�cation for the mesh system indicated in the illustrative
graphic for the KILL boundary condition is given below:

KILL 1 1 I I P P L L 49 49 1 19 1 5 1 19 1 5

NASA CR{206600 141

BOUNDATA KEYWORDS

LSTART LEND

49 51

KILL 1 1 I I P P L L 49 49 19 21 1 5 19 21 1 5

LSTART LEND

49 52

Note that a complete KILL speci�cation requires two additional lines following the KILL
boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common KILL speci�cation error.

Description
In cases where a portion of a 3-D mesh does not represent a valid ow region, the KILL
speci�cation can be used, in conjunction with boundary conditions speci�ed about the
region to be \killed", to e�ectively remove a portion of a given mesh block from the
computational domain. The �gure depicts a single mesh block for the ow through a high
speed rotor passage upon which surface instrumentation is mounted. The blockage
associated with the surface instrumentation is incorporated into the solution through the
application of the appropriate boundary conditions on the surface of the instrumentation,
and by applying the KILL procedure to negate the ow variables of the cells within the
instrumentation itself. It should be noted that this e�ect could be accomplished by
subdividing the original mesh into several smaller pieces, and applying the appropriate
boundary conditions along the outer boundaries of each block.

This boundary condition requires the speci�cation of additional data. The variable
following the label LSTART indicates the starting index in the LFACE1 coordinate direction
(in the example above, this would be the i coordinate direction) for the region to be
\killed". The variable following the label LEND indicates the �nal index in the LFACE1
coordinate direction (again, the i coordinate in the example above) for the region to be
\killed". The remaining coordinate indices for the region to be \killed" are determined by
the variables M1LIM1, M1LIM2 for the j coordinate direction and N1LIM1, and N1LIM2 for
the k coordinate direction. The additional speci�cation of the LSTART, LEND variables
imply that the variables L1LIM, L2LIM are not used in this speci�cation.

The KILL routine functions by constantly resetting the ow variables inside the
region to be killed to the initial values speci�ed by the RMACH input variable. So, in
e�ect, the solution is still being performed in the region to be killed, but the updated
results are constantly reset to a uniform ow value. This routine is not without
drawbacks. First of all, although the mesh points are e�ectively neutralized by the KILL
speci�cation, other routines such as the residual smoothing algorithm are unaltered, and
under certain circumstances, this may cause poor convergence. It is also possible that
divergence may occur within the \killed" cells in spite of the resetting procedure. The
best advice is to manipulate block structures to eliminate the need for the use of the KILL
routine, but the user should be aware that under dire circumstances this facility is
available. The KILL speci�cation should be given prior to any other boundary conditions
to avoid over-writing previously speci�ed boundary speci�cations.

142 NASA CR{206600

BOUNDATA KEYWORDS

Restrictions/Limitations
The KILL boundary speci�cation is not restricted to 3-D mesh surfaces (although for
consistency, 2-D mesh surfaces may use the KIL2D boundary speci�cation).

Common Errors

� Application of KILL to a 2-D mesh system.

� Failure to specify KILL boundary condition prior to boundary conditions de�ning
edges of \killed" region.

� Poor convergence due to residual smoothing across a \killed" region (The residual
smoothing operator can be turned o� through the RESID input variable, although
the time step must be restricted (see variable CFL) to maintain numerical stability).

� Failure to specify the additional data values LSTART, LEND.

NASA CR{206600 143

BOUNDATA KEYWORDS

LAMSS

Porous Solid Surface Viscous No-Slip Boundary
Condition

Mesh Block #1
(151x17x11)

Blade Surface Porous
Boundary Requires a
LAMSS Specification

i

k

j

Essentially Solid, But Porous
Surface Simulated Using LAMSS
Boundary Specification

Application
The LAMSS speci�cation is used to impose a porous injection, no-slip boundary condition
for solid surfaces used in a viscous ow solution. The graphic above illustrates a 3-D
body-centered O-type mesh system for a turbine vane cascade. The LAMSS speci�cation
is used to simulate the e�ects of a �ne array of discrete cooling holes (porous injection)
which are too small to be individually gridded. The LAMSS provides a \smeared out"
normal injection which essentially simulates the global e�ects of the individual cooling
sites.

Boundary Data File Format
The boundary data �le speci�cations for the hub and blade surfaces in the application
described above and indicated in the illustrative graphic for the LAMSS boundary
condition are given below:

LAMSS 1 1 K K P P I K 1 1 1 151 1 11 1 151 1 11

PT TT RPMLOC TWALL ARATIO

1.1 0.70 0.0 0.00 0.10

Note that a complete LAMSS speci�cation requires two additional lines following the
LAMSS boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common LAMSS speci�cation error.

144 NASA CR{206600

BOUNDATA KEYWORDS

Description

The LAMSS statement speci�es that a solid surface viscous (no-slip) boundary
condition is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed
by LBLOCK1. The LAMSS boundary condition may be applied to either a rotating or
non-rotating surface and may indicate a rotational speed which is di�erent than the
rotational speed of the mesh (RPM) to which the boundary condition is applied (the most
common example of this type of application is a mesh embedded in a rotating blade
passage with an endwall which is non-rotating).

The LAMSS boundary condition is a blend of the INLETG and SSVI boundary
conditions. For each LAMSS statement both a complete INLETG and SSVI surface
condition are calculated and then are combined through a weighted sum based on the
ARATIO speci�cation. This means that if ARATIO is set to 0.0, the LAMSS boundary
condition will behave exactly like a SSVI surface, and if ARATIO is set to 1.0, the surface
will simulate an INLETG condition.

Because of this blend of boundary conditions, LAMSS requires the speci�cation of
additional data as found in INLETG and SSVI. The �rst additional line following the
LAMSS speci�cation is assumed to be a label. The next line contains the values imposed
for the variables PTOT, TTOT, RPMLOC, TWALL, and ARATIO. The value of the PTOT and TTOT

are the desired normalized total pressure and total temperature, respectively, of the
injected ow computed as described in INLETG. The value of the RPMWALL variable is the
desired solid wall dimensional rotational speed in revolutions per minute. This value is
sign dependent and follows the orientation for rotation as described in Figure 3.6. The
variable TWALL determines which type of temperature condition is applied to the surface as
described in SSVI.

Naturally, poor convergence or solution divergence can occur if RPMWALL or TWALL
suggest boundary values which are signi�cantly di�erent from the remainder of the
ow�eld. In such cases where this occurs, it is recommended that the solution be started
with more conservative boundary values, and then restarted using the �nal boundary
values. The value of the variable ARATIO represents the geometric \porosity" of the
surface in the form of the ratio of open (injection) surface area to total surface area for the
boundary segment being de�ned. In other words, if the porous surface has an injection
area of 0.01 square inch per square inch of total surface, then ARATIO would be 0.01.
ARATIO values less than zero or greater than 1.0 are non-physical and not permitted.

Restrictions/Limitations
The boundary rotational speed imposed by the LAMSS boundary condition can only be
non-zero when using the cylindrical coordinate solution algorithm in the ADPAC code.
When using the Cartesian coordinate solution algorithm FCART and/or FCARB= 1:0,
the boundary rotational speed must be zero (RPMWALL= 0:0 when FCART or
FCARB= 1:0). The injection process modeled by LAMSS is always normal to the local
surface topography. Arbitrary injection angle speci�cation is not currently possible.

Common Errors

NASA CR{206600 145

BOUNDATA KEYWORDS

� Incorrect sign for value of boundary rotational speed RPMWALL.

� Attempt to utilize a non-zero boundary rotational speed with the Cartesian
coordinate solution algorithm.

� ARATIO value less than 0.0 or greater than 1.0.

� PTOT, TTOT, and/or TWALL values are signi�cantly di�erent than freestream.

146 NASA CR{206600

BOUNDATA KEYWORDS

MBCAVG

Multiple Block Circumferential Averaging Routine for
Multiple Blade Row Turbomachines

Mixing Plane Interface Between Adjacent
Blade Rows of Multistage Turbomachinery
Utilize the MBCAVG Specification

Mesh Block #1
(81x6x7)

Mesh Block #2
(81x6x7)

i

j

k

i

j

k

Application
The MBCAVG speci�cation is used in applications involving neighboring relatively
rotating blade rows which may consist of one or more mesh blocks. The MBCAVG
speci�cation permits time-averaged interconnection between these adjacent, blade row
local mesh systems based on the \mixing plane" approximation. The example illustrates
the application of the MBCAVG boundary condition for the case of a single-stage turbine,
whereby a single mesh block is used to represent a single blade passage for each blade row
in the turbine stage, and the MBCAVG boundary routine is used to perform the mixing
plane (circumferential/time-averaged) coupling of the relatively rotating blade rows.

Boundary Data File Format
The boundary data �le speci�cations for the mesh interfaces indicated in the illustrative
graphic for the MBCAVG boundary condition are given below. Note that block 1 requires
multiple speci�cations due to the location of the O-grid cut line.

NASA CR{206600 147

BOUNDATA KEYWORDS

MBCAVG 1 2 K K M M I J 7 7 1 6 1 6 36 46 1 6

NSEGS

1

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

2 K M 7 36 46 1 6

MBCAVG 1 2 K K M M I J 7 7 76 81 1 6 36 46 1 6

NSEGS

1

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

2 K M 7 36 46 1 6

MBCAVG 2 1 K K M M I J 7 7 36 46 1 6 1 6 1 6

NSEGS

2

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 1 6 1 6

1 K M 7 76 81 1 6

Note that a complete MBCAVG speci�cation generally requires at least two MBCAVG
statement lines in the boundary data �le for each mesh interface. In the example above,
the �rst two speci�cations provide the inter-block communication for block 1 from block 2,
and the third speci�cation provides the communication for block 2 from block 1. It is a
common error to under-specify an MBCAVG boundary by only providing a single line per
interface.

Description
The MBCAVG speci�cation provides a \circumferential mixing plane" mesh block
communication scheme for steady-state (time-averaged) analysis of multiple blade row
turbomachines. The MBCAVG operator permits the speci�cation of multiple neighboring
blocks upon which the circumferential averaging is applied to provide boundary data for
the current block of interest. This multiple block averaging scheme permits the use of
MBCAVG for body-centered mesh systems and also for multiple blade passage
representations of neighboring blade rows. Due to the complex nature of the
circumferential averaging operator, this boundary condition is restricted to speci�c mesh
con�gurations. The following chart describes the permitted mesh con�gurations for the
MBCAVG speci�cation:

LFACE1 LFACE2 Circumferential Grids Must be

(Block #1 (Block #2 Coordinate Aligned in this

Face) Face) Direction Coordinate

------- ------- --------------- ---------------

I I or K K or I J

J J only K I

K I or K K or I J

A second mesh restriction is that the interface separating two adjacent blade rows

148 NASA CR{206600

BOUNDATA KEYWORDS

must be a surface of revolution, and that meshes along this interface have common axial
and radial grid distributions. This restriction simpli�es the averaging scheme provided by
the MBCAVG speci�cation.

The MBCAVG boundary condition requires the speci�cation of additional data.
The variable following the label NSEGS de�nes the number of neighboring mesh block
surfaces from which the circumferentially averaged data is obtained. In the example, this
value is simply 1 for the upstream inter-blade row boundaries, but is 2 for the downstream
inter-blade row boundary because of the fact that the matching boundary of the upstream
blade row is composed of two distinct mesh segments even though it is taken from a single
mesh block. The next line following the NSEGS variable is a label indicating the variables
which must be input for each of the NSEGS segments in the mixing plane. The variables
LBLOCK2B, LFACE2B, LDIR2B, L2LIMB, M2LIM1B, M2LIM2B, N2LIM1B, and N2LIM2B represent
the values of LBLOCK2, LFACE2, LDIR2, L2LIM, M2LIM1, M2LIM2, N2LIM1, and N2LIM2 for
each of the individual NSEGS segments used in the mixing plane construction. The
segments may be speci�ed in any order.

Restrictions/Limitations
The MBCAVG boundary speci�cation is restricted to mesh interfaces which lie on a
common surface (no signi�cant overlap), and have common axial and radial mesh
coordinates. The mesh must obey the coordinate restrictions outlined in the description
above.

Common Errors

� Failure to provide 2 or more MBCAVG statements for each inter-blade row interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,
M1LIM2, N1LIM1, N1LIM2, M2LIM1B, M2LIM2B, N2LIM1B, N2LIM2B do not
correctly de�ne the interface extents on blocks LBLOCK1 and LBLOCK2B)

� Meshes do not obey the mesh coordinate restrictions listed in the description above.

� Meshes have dissimilar axial and radial coordinates at the interface.

� Application of MBCAVG to mesh interfaces which do not share a common surface,
or which have excess overlap.

� Application of MBCAVG to Cartesian solution mesh systems.

NASA CR{206600 149

BOUNDATA KEYWORDS

PATCH

Contiguous Mesh Block Interface Patching Scheme

Mesh Block #1
(151x17x11)

Mesh Block #2
(17x17x11)

Mesh Block #3
(17x17x11)

i

k

i

k

i k

Contiguous Mesh Block Interface Between
Grids 1 and 2 Requires a PATCH Specification
(illustrated in Boundary Data File Format
statements below)

(j direction is
 out of page)

Spatially Periodic Mesh
Block Interface
on Grid 1 Requires a
PATCH Specification

Self−connected Mesh Block
Interface (O−type mesh)
on Grid 1 Requires a
PATCH Specification

Application
The PATCH speci�cation is used in any application involving neighboring mesh blocks
with a contiguous (common mesh points) interface. The graphic above illustrates a
PATCH connection between mesh blocks in a combination H-O-H mesh system for a
turbine vane cascade. The PATCH boundary speci�cation is used to provide
block-to-block communication between mesh blocks 1 and 2, and mesh blocks 1 and 3, as
well as providing periodic ow boundary conditions for blocks 1, 2, and 3. In addition, the
PATCH routine is used to provide aerodynamic communication across the O-mesh branch
cut for mesh block 1. The PATCH boundary condition is perhaps the most common
speci�cation resulting from the use of the multiple blocked mesh capabilities of the
ADPAC code.

Boundary Data File Format
The boundary data �le speci�cations for the mesh interface indicated in the example for
the PATCH boundary condition are given below:

PATCH 1 2 K I M M J I 11 17 71 81 1 17 1 17 1 11 Blks #1-#2

PATCH 2 1 I K M M K J 17 11 1 17 1 11 71 81 1 17 Blks #1-#2

PATCH 1 3 K I M P J I 11 1 1 6 1 17 1 17 6 1 Blks #1-#3

PATCH 3 1 I K P M K J 1 11 1 17 1 6 6 1 1 17 Blks #1-#3

150 NASA CR{206600

BOUNDATA KEYWORDS

PATCH 1 3 K I M P J I 11 1 146 151 1 17 1 17 11 6 Blks #1-#3

PATCH 3 1 I K P M K J 1 11 1 17 6 11 151 146 1 17 Blks #1-#3

PATCH 1 1 K K M M I J 11 11 6 71 1 17 146 81 1 17 Blk #1 Per

PATCH 1 1 K K M M I J 11 11 81 146 1 17 71 6 1 17 Blk #1 Per

PATCH 2 2 K K P M I J 1 11 1 17 1 17 1 17 1 17 Blk #2 Per

PATCH 2 2 K K M P I J 11 1 1 17 1 17 1 17 1 17 Blk #2 Per

PATCH 3 3 K K P M I J 1 11 1 17 1 17 1 17 1 17 Blk #3 Per

PATCH 3 3 K K M P I J 11 1 1 17 1 17 1 17 1 17 Blk #3 Per

PATCH 1 1 I I P M J K 1 151 1 17 1 11 1 17 1 11 Blk #1 O-Grid

PATCH 1 1 I I M P J K 151 1 1 17 1 11 1 17 1 11 Blk #1 O-Grid

Note that a complete PATCH speci�cation generally requires two PATCH statement lines
in the boundary data �le. For any two grid blocks (1 and 2 for example), the �rst
speci�cation provides the inter-block communication for block 1 from block 2, and the
second speci�cation provides the communication for block 2 from block 1. It is a common
error to under-specify a PATCH boundary by only providing a single line per interface.

Description
The PATCH statement is utilized to provide direct block-to-block communication between
mesh blocks with contiguous grid points. This is perhaps the most common, and most
useful of the boundary condition speci�cations. For many complicated geometries
requiring a multiple block mesh system, a common approach is to generate mesh systems
with coincident mesh points along all, or at least part of the mesh block interfaces. This
property is henceforth referred to as a contiguous mesh block interface (coincident mesh
points). By default, the boundary condition speci�cation must have a one-to-one
correspondence between mesh points in block LBLOCK1 and mesh points in block LBLOCK2.
This type of boundary is particularly e�ective in the �nite-volume ow solver due to the
fact that local and global conservation of the ow variables can be accomplished without
special treatment, by direct substitution of the neighboring block ow variables into the
phantom cells of the block of interest.

The PATCH boundary condition performs this direct substitution between blocks to
provide an aerodynamic communication between neighboring blocks with a contiguous
interface. A PATCH speci�cation can also be imposed connecting a block to itself. The
PATCH boundary condition requires no additional data beyond the initial speci�cation
line, but does require the proper speci�cation of the variables LSPEC1 and LSPEC2. For
boundary conditions involving more than one mesh block, it is possible that the
connection between blocks may involve communication between di�erent grid surfaces (i.e,
an i=constant mesh face in LBLOCK1 connects to a j=constant mesh face in LBLOCK2) and
that the remaining indices in block LBLOCK2 correspond to di�erent coordinates in block
LBLOCK1. The speci�cation of the variables LSPEC1 and LSPEC2 serve to eliminate any
confusion between contiguous boundary patches involving dissimilar mesh coordinates. In
every case, when a particular coordinate direction is speci�ed by the variable LFACE1, the

NASA CR{206600 151

BOUNDATA KEYWORDS

remaining coordinate indices de�ning the extent of the patch on LFACE1 are speci�ed in
their \natural" (i, j, k) order (see the description of LSPEC1 at the beginning of Section
3.7).

In order to relate the coordinate indices in block LBLOCK2 with the indices speci�ed
in block LBLOCK1, the special terms LSPEC1 and LSPEC2 are utilized. The variables LSPEC1
and LSPEC2 should be de�ned as either I, J, or K, based on the connection scheme
between the two blocks. The LSPEC1 variable should de�ne the coordinate direction in
block LBLOCK1 which corresponds to the �rst remaining coordinate in block LBLOCK2

(whose range is de�ned by M2LIM1, M2LIM2), and the LSPEC2 variable should de�ne the
coordinate direction in block LBLOCK1 which corresponds to the second remaining
coordinate in block LBLOCK2 (whose range is de�ned by N2LIM1, N2LIM2). The PATCH
speci�cation may also be used for two-dimensional meshes as long as the third coordinate
direction (k) limits N1LIM1, N1LIM2, and N2LIM1, N2LIM2 are \1" and \2", respectively
(2-D patches are speci�ed as if the mesh were actually one cell deep in the k direction
spanning grid points 1 to 2).

An ADPAC utility program called PATCHFINDER was developed to greatly reduce
the time and e�ort needed to create an ADPAC boundary condition �le (case.boundata).
This utility is described in further detail in Section 6.6. Because the PATCH boundary
condition is one of most frequently used boundary speci�cations in ADPAC , a more
detailed explanation of the three most likely uses of the PATCH statement follows.

Connecting Two Blocks

The most obvious use of the PATCH statement is allowing communication between two
separate but adjacent blocks. The �rst three pairs of PATCH statements in the example
deal with this type of communication. For example, the �rst pair of PATCH statements
sets up the communication between block 1 (vane mesh) and block 2 (upstream mesh).
The �rst PATCH statement speci�es that the K-face of block 1 with index 11, ranging
from i = 71 to 81 and j = 1 to 17, maps to the I-face of block 2 with index 17, ranging
from j = 1 to 17 and k = 1 to 11. The LSPEC's are reversed from natural order in this
example (J I), because the �rst set of indices from the second block specifying the j range
match with the second set (or J) of indices from the �rst block; likewise, the second set of
indices from the second block specifying the k range match with the �rst set (or I) of
indices from the �rst block.

Periodic Boundaries

In several turbomachinery applications, periodic boundary conditions are used to simulate
the e�ect of neighboring blades or repeated geometric features. In the above example, the
fourth through the sixth set of PATCH statement pairs are examples of this type of use.
For example using the �fth pair of PATCH statements describing the periodic boundary
for block 2, the �rst PATCH statement of the pair speci�es that the K-face of block 2 with
index 1 (kmin), ranging from i = 1 to 17 and j = 1 to 17, maps to the K-face of block 2
with index 11 (kmax), ranging from j = 1 to 17 and k = 1 to 17. The two surfaces are
swapped to create the complimentary PATCH statement completing the pair. Whereas a

152 NASA CR{206600

BOUNDATA KEYWORDS

similar usage is employed with block 3, block 1 requires some additional considerations
such as reversed indices in order to ensure proper alignment.

Connecting One Block to Itself

In some types of mesh topologies (i.e., O-mesh and C-mesh), a single block will wrap back
upon itself creating a branch cut. In the above example, the �nal pair of PATCH
statements is an example of this type of use. The �rst PATCH statement speci�es that
the I-face of block 1 with index 1 (imin), ranging from j = 1 to 17 and k = 1 to 11, maps
to the I-face of block 1 with index 151 (imax), ranging from j = 1 to 17 and k = 1 to 11.
These two surfaces are swapped to create the complimentary PATCH statement
completing the pair.

Restrictions/Limitations
The PATCH boundary speci�cation is restricted to mesh interfaces which have a
one-to-one mesh point correspondence. To maintain the conservative property of the
governing equations, the PATCH routine assumes that the mesh points between the two
blocks of interest are either contiguous, or share a spatially periodic relationship, and it is
left to the user to verify this.

Common Errors

� Failure to provide 2 PATCH statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,
M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not correctly
de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Incorrectly speci�ed block coordinate direction relationships (values of LSPEC1,
LSPEC2 do not correctly de�ne the coordinate connection scheme between block
LBLOCK1 and block LBLOCK2).

� PATCH boundary speci�cation for a periodic boundary is applied to a non-periodic
mesh.

� PATCH boundary speci�cation applied to a spatially periodic Cartesian geometry
using the cylindrical coordinate solution scheme or vice versa (results in incorrect
spatial periodicity relationships) The PATCH boundary speci�cations for Cartesian
geometries must use the Cartesian solution algorithm in ADPAC (see input variable
FCART).

NASA CR{206600 153

BOUNDATA KEYWORDS

PINT

Non-Contiguous Mesh Block Interface Patching
Scheme

Mesh Block #1
(51x11x45)

Mesh Block #2
(51x11x51)

Non−Contiguous Mesh Block Interface Between
Grids 1 and 2 Requires a PINT Specification
(illustrated in Boundary Data File Format
statements below)

i
k j

Application
The PINT speci�cation is used in any application involving neighboring mesh blocks
which share a common mating surface (either contiguous or non-contiguous). The example
graphic above illustrates a two-dimensional plane of a two block 3-D mesh system used to
predict the ow through a converging/diverging nozzle. The mesh points at the interface
between the two grids (near the nozzle throat) are non-contiguous, and therefore, the
PINT speci�cation is used to provide communication between the adjacent mesh blocks.

Boundary Data File Format
The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the PINT boundary condition are given below:

PINT 1 2 I I M P L L 51 1 1 11 1 45 1 11 1 51

PINT 2 1 I I P M L L 1 51 1 11 1 51 1 11 1 45

Note that a complete PINT speci�cation generally requires two PINT statement lines in
the boundary data �le. In the example above, the �rst speci�cation provides the
inter-block communication for block 1 from block 2, and the second speci�cation provides
the communication for block 2 from block 1. It is a common error to under-specify a
PINT boundary by only providing a single line per interface.

154 NASA CR{206600

BOUNDATA KEYWORDS

Description
The PINT boundary statement provides a means for block-to-block communication for
cases involving neighboring meshes which share a common surface, but not necessarily
common grid points along a block boundary (meshes with contiguous mesh points should
use the PATCH boundary speci�cation, meshes with contiguous points in one coordinate
direction should use the BCINT1 boundary speci�cation). The PINT speci�cation
instructs the ADPAC code to perform a weighted interpolation to determine the
appropriate ow variables for the phantom cells, based on the non-contiguous data
structure of the neighboring mesh. The bounding surfaces of each block should lie on a
common surface (no signi�cant overlap). The interpolation scheme used in the PINT
speci�cation is not conservative, and therefore the solution accuracy can be degraded by
this procedure.

During code execution, the �rst time the PINT speci�cation is encountered, the
code initiates a search to determine the interpolation stencil for the given array of points
in block LBLOCK1 based on the data in block LBLOCK2. This stencil is then saved to
eliminate the search routine at every application of PINT. In order to provide storage for
the interpolation stencil information, a separate array system based on the dimensioning
parameter NRAINT is utilized. The PINT boundary condition requires no additional
data beyond the initial speci�cation line, but does require some extra care when used.
The primary precaution is that the PINT procedure is based entirely on a simpli�ed
interpolation scheme, and hence, does not maintain either global or local conservation of
ow variables across the mesh interface.

Restrictions/Limitations
The PINT boundary speci�cation is restricted to mesh interfaces which lie on a common
surface (no signi�cant overlap). The PINT procedure is only applicable to 3-D mesh
systems. PINT can not be used across multiple processors in a parallel computing
environment.

Common Errors

� Failure to provide 2 PINT statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values of M1LIM1,
M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not correctly
de�ne the interface extents on blocks LBLOCK1 and LBLOCK2).

� Attempt to use PINT for a periodic boundary (no special spatial periodicity
arrangement is available in PINT.

� Attempt to use PINT on a 2-D mesh block.

� Failure to provide enough storage for the PINT interpolation stencils via the
NRAINT parameter.

� Application of PINT to mesh interfaces which do not share a common surface, or
which have excess overlap.

NASA CR{206600 155

BOUNDATA KEYWORDS

PROBE

Flow Variable Sampling Area Speci�cation

Mesh Block #1
(17x37x17)

Mesh Block #2
(161x37x25)

Mesh Block #3
(17x37x17)

Calculated Blade Surface Pressures
Histories Can Be Output Each Iteration
Using PROBE Boundary Conditions.

Application
The PROBE speci�cation is used to track the time history of the ow variables at speci�c
locations or areas within the computational domain. The example graphic above
illustrates a fan blade with six separate PROBE speci�cations near the tip. This series of
boundary conditions will output a separate ASCII �le for each PROBE.

Boundary Data File Format
The boundary data �le speci�cations for the mesh in the example for the PROBE
boundary condition are given below:

PROBE 2 2 K K P P M M 1 1 5 6 25 26 5 6 25 26

PROBE 2 2 K K P P M M 1 1 15 16 25 26 15 16 25 26

PROBE 2 2 K K P P M M 1 1 25 26 25 26 25 26 25 26

156 NASA CR{206600

BOUNDATA KEYWORDS

PROBE 2 2 K K P P M M 1 1 35 36 25 26 35 36 25 26

PROBE 2 2 K K P P M M 1 1 45 46 25 26 45 46 25 26

PROBE 2 2 K K P P M M 1 1 55 56 25 26 55 56 25 26

Note that a complete PROBE speci�cation do not have to align with multi-grid
boundaries, as they are only evaluated on the �nest mesh level. In addition to single cell
speci�cations, larger areas spanning several cells may be de�ned.

Description
The PROBE boundary statement was developed to act as the numerical equivalent to an
experimental test probe. The user may specify several locations of interest within the
computational domain, and at each iteration on the �ne mesh, averages of ow variables
are output to a separate �le. These time histories of the ow can then be plotted to
analyze the developing ow similar to how experimental data might be used.

The PROBE boundary speci�cation consists of a single line without any additional
information following. The ow variables are averaged across the cells on the LFACE1 of
block LBLOCK1 over the range M1LIM1 to M1LIM2 and N1LIM1 to N1LIM2. One of three
types of averaging can be employed using a PROBE statement: area averaging, mass
averaging, or bi-directional mass averaging. The averaging scheme is determined by the
LSPEC1 variable (A for area averaging, M for mass averaging, or B bi-directional mass
averaging). As the names imply, area averaging and mass averaging use areas and mass
ux to weight the averages, respectively. The bi-directional mass averaging using mass
averaging, but output two values for each iteration depending on the ux vector through
the cell face (one for positive ow, one for negative ow).

As noted above, for each PROBE statement a separate output �le is generated. The
�les are named case.probe.num, where num is the number of the boundary condition as
read into ADPAC . This PROBE �le will contain a few header lines describing the location
of the PROBE followed by data in multiple column format. After each iteration, the
following ow variables are output for a cylindrical mesh block: iteration count, time, mass
ow, total pressure, total temperature, static pressure, static temperature, axial velocity,
radial velocity, and tangential velocity. For a Cartesian mesh block, the radial and
tangential velocities are replaced with y-direction and z-direction velocities, respectively.

Restrictions/Limitations
The PROBE boundary conditions are not limited by the multi-grid restrictions imposed
on all other boundary conditions.

Common Errors

� Incorrectly speci�ed or misaligned extents of boundary region (values of M1LIM1,
M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2, N2LIM1, N2LIM2 do not correctly
de�ne the area of interest on blocks LBLOCK1).

NASA CR{206600 157

BOUNDATA KEYWORDS

� FORTRAN compilers which do not support APPEND access to data �les may not
permit PROBE use.

158 NASA CR{206600

BOUNDATA KEYWORDS

SSIN

Solid Surface Inviscid No-Through-Flow Boundary
Condition

Mesh Block #1
(151x17x11)

Blade Surface No Through−Flow
Boundary Requires an
SSIN Specification

i

k

j

Hub Surface No Through−Flow
Boundary Requires an
SSIN Specification

Application
The SSIN speci�cation is used to impose a no-through-ow inviscid solid surface condition
for any solid surface in a solution. The graphic above illustrates a 3-D body-centered
O-type mesh system for a turbine vane cascade.

Boundary Data File Format
The boundary data �le speci�cation for the mesh boundary indicated in the example for
the SSIN boundary condition is given below:

SSIN 1 1 J J P P I K 1 1 1 151 1 11 1 151 1 11

SSIN 1 1 K K P P I K 1 1 1 151 1 17 1 151 1 17

No additional data beyond the boundary data �le descriptor is required.

Description

NASA CR{206600 159

BOUNDATA KEYWORDS

The SSIN statement speci�es that a solid surface inviscid (no through-ow)
boundary condition is to be applied to the mesh surface speci�ed by LFACE1 on the block
speci�ed by LBLOCK1. The SSIN boundary condition may be applied to either rotating or
non-rotating surfaces. The rotational speed of the boundary is irrelevant for an inviscid
surface on a properly de�ned mesh; either the boundary rotates with the mesh, or, in the
case where the rotational speeds of the mesh and boundary di�er, there is no di�erence in
the application of an inviscid surface boundary condition. The SSIN algorithm imposes no
ow normal to the local mesh surface, but permits tangential velocity components at the
boundary. The current SSIN algorithm is based on a loose speci�cation of the local static
pressure (@p@n = 0) and is known to introduce some non-physical loss. However, it has been
the authors experience that this formulation provides the best mix of accuracy and
reliability for most applications. It should be noted that the SSIN boundary condition is
also very useful as a method of imposing a symmetry plane in a solution for geometries
which possess spatial symmetry. Naturally, the mesh must be generated in a manner
which represents this spatial symmetry as well.

Restrictions/Limitations
The SSIN boundary speci�cation is applicable to 2-D and 3-D mesh surfaces (2-D mesh
surfaces could also use the SS2DIN boundary speci�cation in the same manner).

Common Errors

� Application of SSIN as a symmetry plane condition for a mesh which does not
represent a spatially symmetric geometry

160 NASA CR{206600

BOUNDATA KEYWORDS

SSVI

Solid Surface Viscous No-Slip Boundary Condition

Mesh Block #1
(151x17x11)

Blade Surface No−Slip
Boundary Requires an
SSVI Specification

i

k

j

Hub Surface No−Slip
Boundary Requires an
SSVI Specification

Application
The SSVI speci�cation is used to impose a no-slip boundary condition for solid surfaces
used in a viscous ow solution. The graphic above illustrates a 3-D body-centered O-type
mesh system for a turbine vane cascade. For turbomachinery calculations, the SSVI
speci�cation is normally used to de�ne the blade and endwall surfaces (both rotating and
non-rotating surfaces).

Boundary Data File Format
The boundary data �le speci�cations for the hub and blade surfaces in the application
described above and indicated in the example for the SSVI boundary condition are given
below:

SSVI 1 1 J J P P I K 1 1 1 151 1 11 1 151 1 11

RPMWALL TWALL

0.0 0.0

NASA CR{206600 161

BOUNDATA KEYWORDS

SSVI 1 1 K K P P I K 1 1 1 151 1 17 1 151 1 17

RPMWALL TWALL

0.0 0.0

Note that a complete SSVI speci�cation requires two additional lines following the SSVI
boundary data �le speci�cation line. Failure to properly specify the data in these
additional lines is a common SSVI speci�cation error.

Description

The SSVI statement speci�es that a solid surface viscous (no-slip) boundary
condition is to be applied to the mesh surface speci�ed by LFACE1 on the block speci�ed
by LBLOCK1. The SSVI boundary condition may be applied to either a rotating or
non-rotating surface and may indicate a rotational speed which is di�erent than the
rotational speed of the mesh (RPM) to which the boundary condition is applied (the most
common example of this type of application is a mesh embedded in a rotating blade
passage with an endwall which is non-rotating).

This boundary condition requires the speci�cation of additional data. The �rst
additional line following the SSVI speci�cation is assumed to be a label. The next line
contains the values imposed for the variables RPMWALL and TWALL. The value of the
RPMWALL variable is the desired solid wall dimensional rotational speed in revolutions per
minute. This value is sign dependent and follows the orientation for rotation as described
in Figure 3.6. The variable TWALL determines which type of temperature condition is
applied to the surface. If TWALL = 0.0, an adiabatic wall is assumed. For TWALL > 0.0, a
constant temperature surface with a nondimensional wall temperature of TWALL de�ned
as:

(Twall)non�dimensional =
Twall
Tref

is imposed. Tref is the reference temperature imposed by the input �le variable TREF. A
value of TWALL < 0.0 is not permitted. Naturally, poor convergence or solution divergence
can occur if RPMWALL or TWALL suggest boundary values which are signi�cantly di�erent
from the remainder of the ow�eld. In such cases where this occurs, it is recommended
that the solution be started with more conservative boundary values, and then restarted
using the �nal boundary values.

Restrictions/Limitations
The SSVI boundary speci�cation is applicable to both 2-D and 3-D mesh surfaces (2-D
mesh surfaces could also use the SS2DVI boundary speci�cation). The boundary
rotational speed imposed by the SSVI boundary condition can only be nonzero when
using the cylindrical coordinate solution algorithm in the ADPAC code. When using the
Cartesian coordinate solution algorithm FCART or FCARB = 1.0, the boundary
rotational speed must be zero (RPMWALL = 0.0 when FCART or FCARB = 1.0). Refer to
input �le parameters for a description of TREF, RPM, FCARB, and FCART.

162 NASA CR{206600

BOUNDATA KEYWORDS

Common Errors

� Incorrect sign for value of boundary rotational speed RPMWALL.

� Attempt to utilize a non-zero boundary rotational speed with the Cartesian
coordinate solution algorithm (FCART=1.0).

NASA CR{206600 163

BOUNDATA KEYWORDS

SYSTEM

ADPAC UNIX System Call Speci�cation

BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB

ADPAC

@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@

Boundary
Condition

Loop
....
....
....

....

....

....
SYSTEM

Time−Marching Loop

BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB

BBBBBB
BBBBBB

UNIX>

Application
The SYSTEM speci�cation is not a boundary condition, but directs the ADPAC code to
perform a UNIX system call at every application of the boundary condition loop. In the
application illustrated above, every time the ADPAC code encounters the boundary
condition speci�cation SYSTEM the code is directed to perform a UNIX system call of
the command updatebc, which is presumably a user-speci�ed code used to update certain
boundary variables (see sample format below). This new data could then be imported
using the BDATIN boundary speci�cation. The SYSTEM function can quickly lead to
trouble due to the number of times it is called within the time-marching strategy, and the
user should thoroughly review the documentation below before attempting to use this
facility.

Boundary Data File Format
The boundary data �le speci�cations for the mesh interface indicated in the illustrative
graphic for the SYSTEM boundary condition are given below:

SYSTEM 1 1 J J P P I K 1 1 11 21 1 11 11 21 1 11

INTERVAL

1

COMMAND

/usr/local/bin/updatebc

Note that a complete SYSTEM speci�cation requires the speci�cation of additional data
beyond the standard boundary speci�cation line.

164 NASA CR{206600

BOUNDATA KEYWORDS

Description
The SYSTEM statement is provided to permit the speci�cation of a UNIX system call
from within the ADPAC code. Once the SYSTEM speci�cation is directed into the
ADPAC code, at a speci�ed interval of iterations, during every execution of the boundary
condition loop, when the SYSTEM speci�cation is encountered, the code executes the
command provided by the SYSTEM speci�cation and pending successful completion,
continues execution. The SYSTEM speci�cation is based on the FORTRAN intrinsic
system function which must be available in the compiling system. It should be noted that
the command dictated by the SYSTEM speci�cation could be performed every time the
boundary condition loop is encountered. This suggests that the system call could be made
a minimum of four times for each iteration of the time-marching scheme (for the
four-stage scheme). This number can grow rapidly if more complicated iteration strategies
are used such as multi-grid and subiterations. The user should be warned that such
redundant system calls can wreak havoc on an otherwise friendly solution. A SYSTEM
speci�cation, in conjunction with the BDATIN/BDATOU boundary data speci�ers can be
e�ectively combined to provide a run time interface between the ADPAC code and an
external ow solver.

A SYSTEM speci�cation requires four additional lines in addition to the normal
boundary data �le descriptor, as shown above. The �rst additional line simply contains
the label for the iteration interval INTERVAL, followed by the actual value of INTERVAL.
The SYSTEM routine will only be invoked every INTERVAL time-marching iterations. The
next line contains the label for the system call command (COMMAND) variable. The
following line contains the actual UNIX command to be issued at every SYSTEM
encounter in the boundary condition loop.

Restrictions/Limitations
Data provided in the SYSTEM speci�cation should represent a valid UNIX system
command. The FORTRAN intrinsic function system must be available on the compiling
system.

Common Errors

� Invalid UNIX system command provided in SYSTEM boundary speci�cation.

� Failure to provide the additional data INTERVAL and COMMAND for SYSTEM
speci�cation.

� FORTRAN intrinsic function system unavailable at compile time.

� User unaware that SYSTEM action occurs four or more times per iteration.

NASA CR{206600 165

Cartesian
Coordinate
Reference

Ducted Fan

x

y

z

z

r

Fan Axis

Cylindrical
Coordinate
Reference

θ

Figure 3.14: ADPAC mesh coordinate reference description.

3.8 Mesh File Description

The ADPAC case.mesh �le is a data �le containing the x; y; z grid coordinates of the
multiple mesh blocks which de�ne the physical grid points used in the time-marching
solution. The mesh coordinates are speci�ed in a Cartesian reference frame, as shown in
Figure 3.14, although the ADPAC program may ultimately convert these coordinates to a
cylindrical coordinate system during execution. Regardless of whether the user intends to
utilize the ADPAC code in a Cartesian or cylindrical solution mode, the mesh �le
coordinates are always de�ned by the Cartesian coordinates x, y, and z. The mesh
coordinates are stored in what is known as PLOT3D multiple grid format, and are
formatted using the Scienti�c Database Library (SDBLIB) [16, 17]. The SDBLIB system
allows machine-independent binary �le storage. The case.mesh �le must be available for
every ADPAC run. At the beginning of program execution, the ADPAC program attempts
to open the mesh �le and read in the mesh size to make sure that enough memory has
been allocated for the given problem. If the mesh �le is not found or if the mesh is too
large, the appropriate error message is issued and the program will terminate.

Mesh coordinates are assumed to be nondimensional numbers. The ADPAC code
employs a dimensional scaling factor (see input keyword DIAM) to convert the
nondimensional mesh coordinates into dimensional coordinates with units of feet. Proper
nondimensionalization and speci�cation of the dimensionalizing factor DIAM is required
in order to accurately achieve the desired ow Reynolds number and rotational speed (see
input keyword ADVR). It is also required that the ordering of the mesh points form a
\left-handed" mesh. This implies that at every point in the mesh, the vectors representing
the positive i, j, and k coordinate directions form a left-handed coordinate system (see
Figure 3.15). Consider the case of a sheared H-grid discretizing a single blade passage of a
compressor. If one assumes that looking downstream through the blade passage is
essentially the positive i direction, and that the radial direction from hub to tip is
essentially the positive j direction, a left-handed mesh would require that the positive k
direction be from right to left (counter-clockwise) in this orientation. In general, a mesh
that will maintain a stable solution should contain the following characteristics:
left-handed coordinates, matching surfaces at block interfaces (no overlap), minimal grid
shear, and mesh expansion ratios less than 1.3. With some geometries, these criteria may
be more di�cult to reach, but are provided as a guide to the user.

166 NASA CR{206600

ik

j

Left−Handed Mesh Right−Handed Mesh

k

j i

Figure 3.15: All ADPAC mesh systems must have a left-handed coordinate system description.

The mesh �le may be utilized directly with the PLOT3D program when the default
real number size of the compiled PLOT3D code is de�ned as 32 bits (as it is on many
workstations). The corresponding PLOT3D read command for an ADPAC mesh �le is:
read/mg/bin/x=case.mesh. The user should substitute his/her own case name in the
PLOT3D input line. Unformatted mesh �les may be converted to ADPAC format using
the MAKEADGRID program described in Chapter 6.

In order to understand the PLOT3D multiple-grid mesh �le format, and the
utilization of the SDBLIB routines, a comparison of the FORTRAN coding for each
method is given below for comparison. The x; y; z coordinates are read in as a
single-dimensioned array in the SDBLIB format, and the ADPAC program includes a
conversion routine (source �le convas.f) which converts the single dimension array data to
a three-dimensional data array. The FORTRAN coding to read a PLOT3D unformatted
multiple-block mesh �le might be given as:

OPEN(UNIT=IGRID,FILE=FNAME,FORM='UNFORMATTED',STATUS='OLD')

READ(IGRID) MG

READ(IGRID) (IL(L), JL(L), KL(L),L=1,MG)

DO 10 L = 1, MG

READ(IGRID) (((X(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((Y(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((Z(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L))

10 CONTINUE

Each of the terms used in the FORTRAN code given above are de�ned below:

IGRID FORTRAN logical unit number for read statement

FNAME File name for mesh �le

MG Number of grid blocks

NASA CR{206600 167

IL(L) Maximum i grid index for block L

JL(L) Maximum j grid index for block L

KL(L) Maximum k grid index for block L

X(I,J,K,L) Cartesian coordinate value of x for point (I,J,K) in block L

Y(I,J,K,L) Cartesian coordinate value of y for point (I,J,K) in block L

Z(I,J,K,L) Cartesian coordinate value of z for point (I,J,K) in block L

An example of the corresponding FORTRAN coding to read an ADPAC binary
mesh �le using the SDBLIB routines is given below:

CALL QDOPEN(IGRID, FNAME, JE)

CALL QDGETI(IGRID, MG , JE)

DO 10 L = 1, MG

CALL QDGETI(IGRID, IL(L), JE)

CALL QDGETI(IGRID, JL(L), JE)

CALL QDGETI(IGRID, KL(L), JE)

10 CONTINUE

IPOINT = 1

DO 20 L = 1, MG

ILENGTH = IL(L) * JL(L) * KL(L)

CALL QDGEEA(IGRID, X(IPOINT), ILENGTH, JE)

CALL QDGEEA(IGRID, Y(IPOINT), ILENGTH, JE)

CALL QDGEEA(IGRID, Z(IPOINT), ILENGTH, JE)

IPOINT = IPOINT + ILENGTH

20 CONTINUE

CALL QDCLOS(IGRID, JE)

A listing of the additional terms used in the coding above is given below:

QDOPEN SDBLIB routine to open a �le for input or output

QDGETI SDBLIB routine to get an integer

QDGEEA SDBLIB routine to get a real array of length ILENGTH

QDCLOS SDBLIB routine to close a �le

IGRID FORTRAN logical unit number for grid input

JE Integer error trigger; 0 for no error, 6= 0 if an error occurs

ILENGTH Integer length of an array of data

IPOINT Integer pointer for block L to locate the initial memory
location for a block of data

3.9 Body Force File Description

The series of ADPAC body force �les are data �les containing the blade blockage, body
force, and energy source terms for each individual mesh block used in a 2-D axisymmetric
representation of an embedded blade row (see Section 2.3). The �le naming procedure for
the body force �le is somewhat di�erent than the mesh, plot, and restart �les, where a
single �le contains all the data for a multiple-block solution. A separate �le is used for

168 NASA CR{206600

each mesh block employing body forces. Hence the �le name is case.bf.# where #
represents the block number to which the body forces should be applied.

The terms in the body force �le are stored in binary format, based on the
SDBLIB routines. The blockage, body forces, and energy sources are stored as
nondimensional numbers using the nondimensionalization strategy described in Appendix
A.

The body force data are read and written as a single-dimensioned array in the
SDBLIB format, and the ADPAC program includes a conversion routine (source �le
convas.f) which converts the one-dimensional array data to three dimension array data. In
order to understand the body force �le format and the utilization of the SDBLIB routines,
a representative FORTRAN coding example to read in a body force �le is given below:

CALL QDOPEN(IBODY, FNAME, JE)

CALL QDGETI(IBODY, NG , ILENGTH, JE)

CALL QDGETI(IBODY, IMX, ILENGTH, JE)

CALL QDGETI(IBODY, JMX, ILENGTH, JE)

CALL QDGETI(IBODY, KMX, ILENGTH, JE)

ILENGTH = IMX * JMX * KMX

CALL QDGETE(IBODY, DUMMY, JE)

CALL QDGETE(IBODY, DUMMY, JE)

CALL QDGETE(IBODY, DUMMY, JE)

CALL QDGETE(IBODY, DUMMY, JE)

CALL QDGEEA(IBODY, BFR (IPOINT(L)), ILENGTH, JE)

CALL QDGEEA(IBODY, BFRU (IPOINT(L)), ILENGTH, JE)

CALL QDGEEA(IBODY, BFRV (IPOINT(L)), ILENGTH, JE)

CALL QDGEEA(IBODY, BFRW (IPOINT(L)), ILENGTH, JE)

CALL QDGEEA(IBODY, BFRE (IPOINT(L)), ILENGTH, JE)

CALL QDGEEA(IBODY, BL (IPOINT(L)), ILENGTH, JE)

CALL QDGEEA(IBODY, BP (IPOINT(L)), ILENGTH, JE)

CALL QDCLOS(IBODY, JE)

A listing of the FORTRAN variables and their meanings is given below:

QDOPEN SDBLIB routine to open a �le for input or output

QDGETI SDBLIB routine to get an integer

QDGETE SDBLIB routine to get a real number

QDGEEA SDBLIB routine to get a real array of length ILENGTH

QDCLOS SDBLIB routine to close a �le

IBODY FORTRAN logical unit number for body force �le input

JE Integer error trigger; 0 for no error, 6= 0 if an error occurs

NG Number of blocks in body force �le (must be 1)

IMX Mesh size+1 in the i coordinate direction

JMX Mesh size+1 in the j coordinate direction

KMX Mesh size+1 in the k coordinate direction

ILENGTH Integer length of an array of data

NASA CR{206600 169

IPOINT(L) Integer pointer for block L to locate the initial memory
location for a block of data

BFR Body force for density (continuity equation)

BFRU Body force for axial momentum

BFRV Body force for radial momentum

BFRW Body force for circumferential momentum

BFRE Body force for internal energy

BL Blockage term

BP Pressure correction term (currently unused)

3.10 Standard Output File Description

The ADPAC standard output �le case.output provides information regarding the status of
a particular calculation during code execution. The status information includes startup,
code response to input �les (mesh, restart, standard input, and boundary data),
convergence history, error messages, and output �le generation (plot �les, restart �les,
body force �les). The information given in the standard output �le is essentially self
explanatory, so no further description is given here.

3.11 Plot File Description

The ADPAC case.p3dabs and case.p3drel plot �les contain predicted absolute and relative
reference frames ow data values, respectively, for each of the mesh points in a
multiple-block mesh ADPAC solution. The grid-centered aerodynamic data is obtained by
algebraically averaging the cell-centered data generated by the �nite-volume solver during
the time-marching process. As a result of the averaging procedure, this data can
occasionally appear inconsistent at the edges of a mesh block, and should therefore only
be used for graphical viewing, and not for post-processing (i.e., evaluating performance
data, mass ow rates, pressure rise, etc.). The ow plot data are speci�ed in a Cartesian
coordinate system (velocities are vx; vy; vz) to be consistent with the representation of the
mesh �le. The plot �les are written in what is known as PLOT3D multiple grid binary
format. The plot data are formatted using SDBLIB . The ow data are listed as
nondimensional numbers using the nondimensionalization strategy described in Appendix
A.

The plot �les may be utilized directly with the PLOT3D program when the default
real number size of the compiled PLOT3D code is de�ned as 32 bits (as it is on many
workstations). The corresponding PLOT3D read command for an ADPAC mesh and ow
�le is: read/mg/bin/x=case.mesh/q=case.p3dabs. The user should substitute his/her
own case name in the PLOT3D input line.

For solutions employing the one-equation Spalart-Allmaras or two-equation
k�R turbulence model, an additional PLOT3D compatible �le is written for plotting the
turbulence parameter data. The case.p3d1eq or case.p3d2eq �le is identical in format to
that given above except that the variables are replaced with the turbulence parameters.
For the one-equation model the variables included are �; �~�; d; �, and �t. For the

170 NASA CR{206600

two-equation model the variables included are �; �k, �R, �lam, and �t. The user must be
cautioned to avoid using this �le in conjunction with PLOT3D functions which require
speci�cation of all the velocity components (i.e., pressure, temperature).

In order to understand the PLOT3D multiple-grid ow �le format, and the
utilization of the SDBLIB routines, a comparison of the FORTRAN coding for each
method is given below for comparison. The equivalent FORTRAN coding to write an
unformatted PLOT3D ow �le could be given as:

WRITE(IFLOW) MG

WRITE(IFLOW) (IL(L), JL(L), KL(L),L=1,MG)

DO 10 L = 1, MG

WRITE(IFLOW) EM(L), REY(L), ALF(L), TIME(L)

WRITE(IFLOW) (((R (I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((RU(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((RV(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((RW(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((RE(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L))

10 CONTINUE

Each of the terms used in the FORTRAN code given above are de�ned below:

MG number of grid blocks

IL(L) maximum i grid index for block L

JL(L) maximum j grid index for block L

KL(L) maximum k grid index for block L

X(I,J,K,L) Cartesian coordinate value of x for point (I,J,K) in block L

Y(I,J,K,L) Cartesian coordinate value of y for point (I,J,K) in block L

Z(I,J,K,L) Cartesian coordinate value of z for point (I,J,K) in block L

EM(L) PLOT3D Reference Mach number for block L

REY(L) PLOT3D Reference Reynolds number for block L

ALF(L) PLOT3D Reference angle for block L

TIME(L) PLOT3D Reference time for block L

R(I,J,K,L) � at point (I,J,K) in block L

RU(I,J,K,L) �ux at point (I,J,K) in block L

RV(I,J,K,L) �uy at point (I,J,K) in block L

RW(I,J,K,L) �uz at point (I,J,K) in block L

RE(I,J,K,L) �e at point (I,J,K) in block L

An example of the corresponding FORTRAN coding to write an ADPAC binary ow
�le using the SDBLIB routines is given below:

CALL QDOPEN(IFLOW, FNAME, JE)

CALL QDPUTI(IFLOW, MG , JE)

DO 10 L = 1, MG

CALL QDPUTI(IFLOW, IL(L), JE)

CALL QDPUTI(IFLOW, JL(L), JE)

NASA CR{206600 171

CALL QDPUTI(IFLOW, KL(L), JE)

10 CONTINUE

IPOINT = 1

DO 20 L = 1, MG

ILENGTH = IL(L) * JL(L) * KL(L)

CALL QDPUTE(IFLOW, EM(L) , JE)

CALL QDPUTE(IFLOW, REY(L) , JE)

CALL QDPUTE(IFLOW, ALF(L) , JE)

CALL QDPUTE(IFLOW, TIME(L), JE)

CALL QDPUEA(IFLOW, R (IPOINT), ILENGTH, JE)

CALL QDPUEA(IFLOW, RU(IPOINT), ILENGTH, JE)

CALL QDPUEA(IFLOW, RV(IPOINT), ILENGTH, JE)

CALL QDPUEA(IFLOW, RW(IPOINT), ILENGTH, JE)

CALL QDPUEA(IFLOW, RE(IPOINT), ILENGTH, JE)

IPOINT = IPOINT + ILENGTH

20 CONTINUE

CALL QDCLOS(IFLOW, JE)

A listing of the additional terms used in the coding above is given below:

QDOPEN SDBLIB routine to open a �le for input or output

QDPUTI SDBLIB routine to write an integer

QDPUTE SDBLIB routine to write a real number

QDPUEA SDBLIB routine to write a real array of length ILENGTH

QDCLOS SDBLIB routine to close a �le

IFLOW FORTRAN logical unit number for ow input

JE An error trigger; 0 for no error, 6= 0 if an error occurs

ILENGTH Integer length of an array of data

IPOINT Integer pointer for block L to locate the initial memory
location for a block of data

3.12 Restart File Description

The ADPAC restart �le is a data �le containing the cell-centered ow variables generated
during an ADPAC solution. This �le is intended to permit continued execution of the code
from the point at which a previous calculation was terminated. This feature permits
breaking large jobs into smaller computational pieces. This process of job restarting is
considered a good practice to avoid loss of data due to computer malfunctions and job
quota limitations. At the end of a given job, whether the calculation is a restart run or
not, the ADPAC program will attempt to write out the current cell-centered data to the
�le case.restart.new. The restart �le may then be used to continue the calculation at this
same point by simply renaming the �le case.restart.new to case.restart.old, setting the
input trigger appropriately (see FREST), and rerunning the code. The restart data are
written in either the cylindrical or Cartesian coordinate system depending on the variable
format used during execution of the ADPAC code for each particular mesh block.
Velocities are speci�ed as either vx; vy; vz (Cartesian) or vx; vr; v� (cylindrical), and all ow
variables utilize the nondimensionalization strategy described in Appendix A.

172 NASA CR{206600

Similar to the mesh �le, the restart data are read as a single-dimensioned array in
the SDBLIB format, and the ADPAC program includes a conversion routine (source �le
convas.f) which converts the one-dimensional array data to three-dimensional array data.

For solutions employing the iterative implicit time-marching algorithm, several time
levels of data must be stored in the restart �le to properly restart the solution. The
additional time levels of data are stored immediately following the current time level data
and a simple trigger variable (IDATA, above) which informs the code of the existence of the
additional time level data. If no additional data are present in the restart �le, and an
implicit solution is being restarted, the code initializes the additional time level data
arrays with the best available values.

In order to demonstrate the format of the restart �le, a sample of the FORTRAN
coding utilizing the SDBLIB library required to read a restart �le is given below:

CALL QDOPEN(IREST, FNAME, JE)

CALL QDGETI(IREST, MG , JE)

DO 10 N = 1, MG

CALL QDGETI(IREST, IMX(N), JE)

CALL QDGETI(IREST, JMX(N), JE)

CALL QDGETI(IREST, KMX(N), JE)

10 CONTINUE

DO 20 N = 1, MG

LENGTH = IMX(N) * JMX(N) * KMX(N)

CALL QDGEEA(IREST, R (IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RU(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RV(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RW(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RE(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, P (IJK(N)), LENGTH, JE)

20 CONTINUE

NLENGTH = MG

CALL QDGEIA(IREST, NCYC , NLENGTH , JE)

CALL QDGEEA(IREST, DTHETA , NLENGTH , JE)

CALL QDGEEA(IREST, OMEGAL , NLENGTH , JE)

Additional data for implicit calculations follows.

CALL QDGETI(IREST, IDATA, JE)

DO 30 N = 1, MG

LENGTH = IMX(N) * JMX(N) * KMX(N)

CALL QDGEEA(IREST, RM1 (IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RUM1(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RVM1(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RWM1(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, REM1(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RM2 (IJK(N)), LENGTH, JE)

NASA CR{206600 173

CALL QDGEEA(IREST, RUM2(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RVM2(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RWM2(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, REM2(IJK(N)), LENGTH, JE)

30 CONTINUE

CALL QDCLOS(IREST, JE)

Each of the terms used in the FORTRAN code given above are de�ned below:

MG Number of grid blocks

IMX(L) Maximum i grid index for block L

JMX(L) Maximum j grid index for block L

KMX(L) Maximum k grid index for block L

R(IJK(L)) � at point IJK(L) in block L

RU(IJK(L)) �ux at point IJK(L) in block L

RV(IJK(L)) �uy at point IJK(L) in block L

RW(IJK(L)) �uz at point IJK(L) in block L

RE(IJK(L)) �e at point IJK(L) in block L

P(IJK(L)) pressure at point IJK(L) in block L

QDOPEN SDBLIB routine to open a �le for input or output

QDGETI SDBLIB routine to get an integer

QDGEIA SDBLIB routine to get an integer array of length ILENGTH

QDGEEA SDBLIB routine to get a real array of length ILENGTH

QDCLOS SDBLIB routine to close a �le

IREST FORTRAN logical unit number for restart input

JE Integer error trigger; 0 for no error, 6= 0 if an error occurs

ILENGTH Integer length of an array of data

IJK(L) Integer pointer for block L to locate the initial memory location
for a block of data

NCYC Iteration number when restart �le was written

DTHETA Block rotation increment (��)

OMEGAL Block rotational speed (nondimensional)

IDATA Implicit restart data trigger (0-no implicit data, 1-restart data
follows)

RM1(IJK(L)) � at point IJK(L) in block L (n� 1 time level)

RUM1(IJK(L)) �ux at point IJK(L) in block L (n� 1 time level)

RVM1(IJK(L)) �uy at point IJK(L) in block L (n� 1 time level)

RWM1(IJK(L)) �uz at point IJK(L) in block L (n� 1 time level)

REM1(IJK(L)) �e at point IJK(L) in block L (n� 1 time level)

RM2(IJK(L)) � at point IJK(L) in block L (n� 2 time level)

RUM2(IJK(L)) �ux at point IJK(L) in block L (n� 2 time level)

RVM2(IJK(L)) �uy at point IJK(L) in block L (n� 2 time level)

RWM2(IJK(L)) �uz at point IJK(L) in block L (n� 2 time level)

REM2(IJK(L)) �e at point IJK(L) in block L (n� 2 time level)

174 NASA CR{206600

CYCLE MAXIMUM RMS MASS MASS PRESSURE ADIABATIC NUMBER NUMBER

NUMBER ERROR ERROR INFLOW OUTFLOW RATIO EFFICIENCY SS PTS SEPPTS

------ --------- --------- -------- -------- --------- --------- ------ ------

301 -2.17895 -5.52081 3.46778 3.46781 1.58615 0.88737 308 0

302 -2.42051 -5.57462 3.46777 3.46656 1.58762 0.89150 315 0

303 -2.65891 -5.64842 3.46774 3.46646 1.58949 0.89685 317 0

304 -2.78033 -5.71740 3.46765 3.46781 1.59123 0.90145 320 0

.

.

.

Figure 3.16: Sample ADPAC convergence �le (case.convergence).

3.13 Convergence File Description

The ADPAC convergence history �le case.converge is an ASCII data �le which contains
the residual convergence history of the time-marching solution. The residual history is
useful for determining whether the numerical solution has converged su�ciently to permit
interrogation of the numerical results, or whether additional restarted calculations are
required to obtain an accurate solution. Typically, a solution is deemed converged when
the residuals have been reduced by three orders of magnitude or more. The case.converge
�le is formatted in columns to permit convenient plotting using any of a number of
plotting programs and is organized as shown in Figure 3.16.

The residual at any cell in the �nite volume solution is calculated as the sum of the
changes in the �ve conservation variables (�, �u, �v, �w, and �e). The maximum residual
is then de�ned as the maximum of all the residuals over all the cells of all mesh blocks.
The root-mean square residual is the square root of the sum of the squares of all the cells
for all mesh blocks. The case.converge �le residual data are reported as the base 10
logarithm of the actual residuals in order to quickly evaluate the convergence of the
solution (e.g., if the reported log10 maximum residual starts at -2.5 and ends up at -5.5,
the solution has converged three orders of magnitude). Several additional data are also
output to the convergence �le based on ow parameters occurring across inow and
outow boundaries. Since many ow cases involve a single inlet and a single exit, a useful
measure of convergence is the di�erence between the inlet and exit mass ow rate, and
how much the mass ow rate varies from iteration to iteration.

For 2-D Cartesian ow calculations a unit depth (1.0 in mesh coordinates) is
assumed for the third coordinate direction to determine the mass ow rate. For 2-D
cylindrical ow calculations, the geometry is assumed to be axisymmetric (in the x-r
plane) and a multiple of 2� is used in the mass ow integration (the mass ow is
computed as if the full circumference of the axisymmetric geometry were employed). Data
are provided in the convergence �le for the sum of all mass crossing any inow boundary
(INLETG, INLETG, INLETT, INLETM, INLETR) and all mass crossing any exit
boundary (EXITG, EXITX, EXITT, EXITP). The pressure ratio (ratio of mass-averaged
total pressures from all inlet and exit boundaries) is also reported in the convergence �le,
as well as the adiabatic e�ciency computed based on mass-averaged total temperature
and total pressure of the inow and outow boundaries, respectively. Finally, the number

NASA CR{206600 175

of computational cells with supersonic ow and the number of computational cells
indicating negative axial ow (vx < 0) are also reported in the convergence history �le.
The appearance of negative axial ow may or may not be a concern depending upon the
geometry being modeled; however, this value should level o� to a near-constant value for
converged solutions. Oscillation of this value may indicate a shedding tendency within the
ow domain which may be triggered either by physical or non-physical (numerical) means.

In the event that the one-equation or two-equation turbulence model is enabled
(F1EQ=1.0 or F2EQ=1.0), the convergence characteristics of the turbulence transport
equation(s) are output into a separate �le named case.converge SA or case.converge KR,
respectively. This allows the user to also monitor the turbulence transport equation(s)
convergence characteristics.

3.14 Image File Description

The ADPAC graphics display system (see Chapter 5) has the capability of saving a raster
image of the local graphics screen to a �le at speci�c iteration intervals using the Silicon
Graphics image �le format. This feature is included as a simple means of constructing
ow�eld animations (see FGRAFIX, FGRAFINT, FIMGSAV, and FIMGINT). Image �les
can be viewed after they have been saved by issuing the command: ipaste case.img.#, or
converted to other image formats (i.e., TIFF, JPG, GIF). Other Silicon Graphics IRIX
Operating System-speci�c commands such as imgview, movie, and others may also be
suitable for viewing image �les. Additional information on the IRIS image format and the
image manipulation commands are available in the Silicon Graphics system
documentation.

3.15 Running ADPAC With The One-Equation Turbulence Model

In order to run ADPAC with the one-equation Spalart-Allmaras turbulence model enabled,
the following steps must be taken. First, the input �le trigger must be enabled
(F2EQ=1.0). This activates the additional partial di�erential equation solution scheme for
the one-equation model. Note that this completely disables the standard algebraic
(Baldwin-Lomax) turbulence model. It is generally recommended that the mesh should be
su�ciently re�ned to adequately resolve the inner (laminar sublayer) of the turbulent
boundary layer ow. There is, at present, no built in mechanism in the ADPAC code to
verify that this mesh restriction has been met, and it is therefore up to the user to
perform this check.

The speci�cation of inlet boundary conditions and initial conditions for the
turbulence model transport variable (~�) is handled by specifying a value of the
non-dimensional variable � = ~�=�. By specifying �, the user does not need to account for
variations in ~� caused by changes in PREF, TREF, DIAM, or any other reference quantity
used for non-dimensionalization. It was found in the cases tested, that a small initial value
of � does not provide a strong enough trigger for the production term and causes the
solution to converge to the trivial solution (~� = 0:0), resulting in a laminar ow �eld. The
boundary data �le modi�cations apply only to inow boundary speci�cations (i.e.,

176 NASA CR{206600

INLETT, INLETG). The reader is referred to the section on boundary conditions for
details covering the speci�cation of inlet ow � values. Most cases are run using an initial
value of � equal to 20 (FKINF=20.0 set in case.input) with inlet values being speci�ed to
one (�in = 1:0 set in the case.boundata).

The behavior of the partial di�erential equation can be monitored in both the
standard output and convergence �le iteration histories of maximum and RMS residual.
Separate convergence history lines are tabulated by the ADPAC code for the �~� transport
equation. This data is printed to the standard output immediately following the
continuity, momentum, and energy equation residual information at each iteration. In
order to plot the convergence history, a separate convergence �le is created with only the
one-equation residual data (case.converge SA).

Finally, upon completion, a PLOT3D based data �le representing the mesh
point-averaged data �, �~�, d, �, and �t is written to the �le case.p3d1eq. This �le, in
conjunction with the ADPAC mesh �le (case.mesh) may be employed to graphically
examine the predicted turbulence characteristics of the ow�eld.

Additional details of the one-equation Spalart-Allmaras turbulence model and its
implementation into ADPAC are included in Appendix A.

3.16 Running ADPAC With Two-Equation Turbulence Model

In order to run ADPAC with the two-equation k�R turbulence model enabled, the
following steps must be taken. First, the input �le trigger must be enabled (F2EQ=1.0).
This activates the additional partial di�erential equation solution scheme for the
k�R model. Note that this completely disables the standard algebraic (Baldwin-Lomax)
turbulence model and the wall function formulation. The lack of wall functions implies
that the mesh must be su�ciently re�ned to adequately resolve the inner (laminar
sublayer) of the turbulent boundary layer ow. There is, at present, no built in
mechanism in the ADPAC code to verify that this restriction has been met, and it is
therefore up to the user to perform this check. In addition to the modi�ed input �le, the
boundary data �le must also be modi�ed slightly. The boundary data �le modi�cations
apply only to inow boundary speci�cations, speci�cally the boundary descriptor
INLETG. At present, only the INLETG speci�cation may be used to properly de�ne an
inow boundary in the k�R solution. Since the k�R turbulence model is based on
transport equations, it is necessary to properly specify the inow values of k and R much
in the same manner that other inow properties (total pressure, etc) must be speci�ed.
The inow values for k and R are speci�ed on the 2 lines following the INLETG
speci�cation as shown in the example below:

INLETG 1 1 I I P P J K 1 1 1 73 1 2 1 73 1 2

PTOT TTOT AKIN ARIN

1.0 1.0 0.0001 0.001

Here, the extra variables labeled as PTOT, TTOT, AKIN, ARIN are the inlet
non-dimensional total pressure, total temperature, turbulent kinetic energy (k), and

NASA CR{206600 177

turbulent Reynolds number (R), respectively. Note that AKIN and ARIN are also input
as non-dimensional variables using the non-dimensionalization scheme previously
described. Typical values of AKIN and ARIN are 0.0001 and 0.001, respectively. More
accurate values for speci�c cases where detailed inow turbulence characteristics are
known can be determined based on the de�nitions of k and R shown in Appendix A.

The modi�cations described above are all that is necessary to initiate the
two-equation turbulence model solution sequence. Unfortunately, only a limited amount of
experience with this turbulence model is available to guide the user in case a problem
arises. The behavior of the partial di�erential equations can be monitored in both the
standard output and convergence �le (case.converge KR) iteration histories of maximum
and RMS residual. Separate convergence history lines are tabulated by the ADPAC code
for the k and R transport equations. This data is printed immediately following the
continuity, momentum, and energy equation residual information at each iteration. It
should be mentioned that the multi-grid solution strategy employed to solve the
continuity, momentum, and energy equations is not completely enabled for the
k�R transport equations. This is an area of algorithmical research and may be completed
in future releases of the ADPAC code. The \full" multi-grid solution initialization
sequence is available to rapidly initiate the k�R equation solution variables.

When employing the k�R solution scheme the best practice found to date is to run
the code with relatively small values of the input variable CFL (CFL = 3:0) and run large
numbers of iterations. The full multi-grid start-up procedure has been found to be
somewhat helpful (FFULMG=1.0). The k�R solution scheme converges relatively slowly,
and may take 2-3 times the number of iterations as the algebraic turbulence model to
completely converge. In addition, the cost of a given iteration when the k�R turbulence
model is enabled may be up to 40% greater than a corresponding iteration using the
algebraic turbulence model. It should be noted that there is no added numerical
dissipation in the k�R solution scheme. A naturally dissipative �rst order upwind
di�erencing is used in the discretization of the convective uxes in the k�R equations.
This implies that the input variables VIS2 and VIS4 have no e�ect on the two-equation
turbulence model solution sequence. Finally, upon completion, a PLOT3D -based data �le
representing the mesh point-averaged data �, �k, �R, and �t is written to the �le
case.p3d2eq. This �le, in conjunction with the ADPAC mesh �le (case.mesh) may be
employed to graphically examine the predicted turbulence characteristics of the ow�eld.

In the event that the k�R solution sequence diverges, or simply does not converge,
the best way to stabilize the solution is to lower the value of CFL. Unfortunately, this also
decreases the convergence rate of the solution and increases the overall CPU time required
for a given run. Limited experience with this model, and interruptions in the
ADPAC development schedule prevented a more thorough implementation of this
promising model. Additional details of the two-equation k�R turbulence model and its
implementation into ADPAC are included in Appendix A.

3.17 Troubleshooting an ADPAC Failure

The ADPAC code contains a large number of error checking and handling facilities to
determine and report to the user when a problem in the calculation occurs. Unfortunately,

178 NASA CR{206600

some problems simply cannot be detected and it may occur that for a particular case the
solution will diverge (uncontrolled increase in solution residual) or simply \blow up" as a
result of numerical di�culties or an invalid numerical operation (i.e., divide by zero).
These cases are notoriously frustrating for the user because the cause is often di�cult to
identify. The steps outlined below attempt to provide a structured approach to rectifying
numerical problems for an ADPAC run based on the author's experience.

Step 1. Carefully Check the ADPAC Input File for Errors

The ADPAC standard input �le controls the overall characteristics of the
computational process and plays a large role in determining the behavior of a job. The
user should check the output �le for the correct interpretation of the input �le variables
and possible unspeci�ed variable defaults being used. Typical parameters to check are to
make sure that the CFL variable is negative for steady-state calculations and positive for
time-accurate calculations, and to make sure that the absolute value is not too large (5.0 is
a typical magnitude). If the CFL value is greater than the CFMAX variable, or generally
if the magnitude of CFL is larger than 2.5, then residual smoothing must be activated
(FRESID=1.0). Naturally, the values for VIS2 and VIS4 should also be within their
suggested limits. A common problem for rotating geometries is an incorrect rotational
speed, or simply the wrong sign on the rotational speed (rotating the wrong way), so
check the values of RPM and/or ADVR carefully. The user can also selectively turn o�
features such as the turbulence model (see FTURBB) and/or multi-grid (see FMULTI) to
check on their inuence on the stability of the solution. Finally, the user should make sure
that the proper CASENAME and DIAM variables are speci�ed in the input �le. Other
problems are discussed in the individual input �le variable descriptions in Section 3.6.

Step 2. Carefully Check the ADPAC Boundary Data File for Errors

The ADPAC boundary data �le controls the application of boundary conditions on
the various mesh surfaces necessary to de�ne the ow characteristics of an ADPAC run.
Common errors in the boundary data �le include mismatched PATCH speci�cations,
incorrectly specifying inow data (particularly when INLETT is used), and incorrectly
specifying rotational speeds for solid surfaces using SSVI. If the solution will run for a few
iterations, it may be helpful to get a PLOT3D output �le at this point and examine the
solution (using PLOT3D , FAST , TECPLOT , Fieldview , etc.). Check for obvious solution
features such as ow going the right direction, ow that does not penetrate a solid
boundary, contour lines matching at PATCH boundaries (although contour lines may not
match exactly at any mesh edge), and obvious radical changes in ow variables (total
pressures and/or total temperatures which are very large or negative). The user can often
trace a faulty boundary condition by selectively commenting out several speci�cations
from the boundary data �le and rerunning to see if the same problem occurs. If the
solution diverges even when no boundary conditions are speci�ed (place ENDDATA at
top of case.boundata), then a problem exists in the mesh or input �le. Other boundary
condition speci�c common errors are discussed in the individual boundary data �le
variable descriptions in Section 3.7.

Step 3. Carefully Check the ADPAC Mesh File for Errors

The user should verify the existence of the mesh �le with the proper name and

NASA CR{206600 179

non-zero size in the current working directory. The user can next check to make sure the
�le can be read with the PLOT3D [14] graphical plotting program. A mesh �le which has
been created using the PLOT3D binary �le write option may not acceptable due to the
format of the Scienti�c Database Library (although it can be made so by appending 1024
bytes of any data to the end of the mesh �le). The MAKEADGRID program is available to
convert unformatted mesh �les to ADPAC compatible mesh �les.

Most common problems encountered when the ADPAC code does not perform
adequately can be traced to poor mesh quality. Although the mesh may be free from
obvious aws such as crossed mesh lines and/or zero volumes, this does not guarantee that
numerical di�culties will be avoided. The most common overlooked features of mesh
quality are the mesh expansion ratio and the mesh shear angle. Mesh expansion ratio
relates to the change in physical mesh spacing along a given coordinate direction from one
point to another. For stability, the maximum mesh expansion ratio at any point should
not exceed 1.3 on the �ne mesh and not exceed 2.0 on the coarsest grid level when using
multi-grid acceleration. The ADPAC code provides a listing of maximum mesh expansion
ratios for each grid block and issues a warning if the mesh expansion ratio exceeds 1.3. The
code can tolerate larger ratios in many cases, but de�nite problems can be expected if the
maximum expansion ratio gets larger than 2.0. Mesh shear can also cause problems; the
more orthogonal the mesh, the less likely mesh-induced numerical di�culties will occur.
Another potential mesh problem involves mesh cells with very small radii (i.e., along a
sting upstream of a propeller) which may require increasing the diameter of the sting to
prevent problems. Application of the multi-grid iteration strategy and reducing the value
of EPSY in the input �le have been found to be e�ective remedies for such problems.

Step 4. Check for the Possibility of an Invalid Flow Condition

The author's experience has been that many users feel if a problem can be de�ned
then it should possess a solution; in uid dynamics this is certainly not true. If a solution
is attempted for a fan rotor, for example at a pressure ratio which is beyond the stall
point for that rotor, then no solution exists and the code will very likely diverge without
explanation. In many cases, the numerical equivalent of an invalid ow condition is that
the solution will either not converge, or will simply diverge. Another common example is
attempting to extract a steady-state solution for a problem which is truly time-dependent.
Blunt body ows often result in a time-dependent solution due to vortex shedding, and
the steady-state analysis of this ow will likely never converge. This behavior also occurs
frequently when a strong adverse pressure gradient or ow separation is present in the
solution. Now it is true that in some cases, the level of convergence may also be limited by
such factors as mesh quality, numerical accuracy, and/or turbulence model limit cycles,
and it is di�cult to determine whether the cause is numerical or physical. This is
unfortunately a matter of experience and the user is encouraged to question whether their
case can truly have a \steady" solution.

Step 5. Determine if the Problem is Computer Dependent

The ADPAC code was developed and tested on UNIX-based operating systems using
FORTRAN 77 standard coding techniques. In spite of the standardization in the
computer industry, not all machines produce the same answer for a given problem due to
compiler optimizations and code handling features. It has been the author's experience

180 NASA CR{206600

that when the results are unexpected or spurious, compilers are often a source of
problems, particularly when the code has been compiled for the �rst time on a speci�c
architecture, or when a new release of the operating system or FORTRAN compiler has
been installed. Before reporting an unsolvable problem, it is a good practice to completely
recompile the code on a known stable machine with a well-tested version of FORTRAN
without using optimization (modi�cations to the ADPAC Make�le may be required). If the
code displays the same error, then it is possible that a bug has been uncovered and this
should be reported so future versions do not encounter the same problem. If the compiler
supports static memory allocation, then this option should be enabled whenever possible.

Step 6. Determine the E�ect of Key Input Variables

Some \�ne-tuning" of input variables is occasionally required to obtain a converged
solution, or to prevent an instability from forming. The following suggestions may be
useful to aid in establishing the sensitivity of the solution to various inputs:

A. Clear the input �le and boundary data �le of all speci�cations (except the case
name, which must be activated). If the code diverges, there is almost certainly a
problem with the grid. Examine the code output to determine where the maximum
error occurs, and carefully check the grid in this region.

B. Try to run the problem for a few cycles without any boundary conditions and CFL
= -1.0. This is essentially a uniform ow test. If the code diverges, then the
problem is either in the input �le or the mesh.

C. Turn o� all multi-grid (FMULTI = 1.0, FFULMG = 0.0). If it now runs, check the
mesh expansion ratios.

D. Vary the parameter CFMAX. Lower values imply more smoothing. It is possible to
have too much smoothing, so both larger and smaller values should be tested.

E. Make sure FRESID is set to 1.0 if the magnitude of CFL is larger than 2.0.

F. Examine and vary the values of VIS2 and VIS4.

G. Turn o� the turbulence model FTURBB = 999999.0. If the problem still exists, try
to run inviscid ow (FINVVI = 0.0).

Step 7. Report the Problem

In the event that no other cause of the problem can be detected, the problem should
be reported to NASA. The recommended contact for problems (or successes) is:

Dr. Chris Miller

Mail Stop 77-6

NASA-Lewis Research Center

21000 Brookpark Road

Cleveland, OH 44135

(216) 433-6179

Christopher.J.Miller@lerc.nasa.gov

NASA CR{206600 181

The author is also interested in keeping up with known problems and may be
reached at:

Dr. Ed Hall

Speed Code T-14A

Allison Engine Company

Indianapolis, IN 46206-0420

(317) 230-3722

Edward.J.Hall@allison.com

182 NASA CR{206600

Chapter 4

RUNNING ADPAC IN PARALLEL

4.1 Description of Parallel Solution Sequence

The ADPAC code possesses programming features which permit execution of
multiple-block jobs across multiple-processor computing architectures. By de�nition,
multiple-processor computing architectures includes both shared-memory multiprocessor
computers such as the Silicon Graphics ORIGIN 2000, and network-connected UNIX
workstation clusters acting as a virtual parallel computing resource, as shown in
Figures 4.1 and 4.2, respectively. The parallelization philosophy in ADPAC is based on a
coarse-grained domain decomposition. Individual blocks in a multiple-block mesh are
distributed among the available processors to e�ectively spread the computational load.
During parallel execution, the ADPAC code employs a master/slave programming style for
parallel jobs. This implies that all input and output data processing occurs through a
master, or root, process as shown in Figure 4.3.

The ADPAC source code invokes parallelization based on inter-processor message
passing via native calls to the Application Portable Parallel Library (APPL) message
passing library. This programming structure is illustrated in Figure 4.4. APPL was
developed at the NASA Lewis Research Center and documentation is available that
explains how to write code using APPL and how to run codes written with APPL [19].
Previous versions of this manual [20] provided speci�c instructions on how to run
ADPAC using the direct APPL parallel interface.

While APPL by itself is a powerful programming medium, it does not provide
widespread support for many computer systems, nor does it necessarily provide optimum
communication performance (although in the authors' experience the APPL routines are
better than many other alternatives). To exploit other options for parallel computing
ADPAC relies on programming layers which translate the native APPL calls to the desired
inter-processor communication language. Programming layers are available for the Parallel
Virtual Machine (PVM) [21] and Message Passing Interface (MPI) [22] communication
libraries. The modi�ed programming structure for the PVM and MPI communication
interfaces are illustrated in Figures 4.5 and 4.6, respectively. As such, ADPAC can be run
in parallel using native APPL , or PVM , MPICH , CHIMP , or other proprietary
MPI communication implementations. Based on the authors' overall experience with

NASA CR{206600 183

S
ha

re
d

M
em

or
y

ADPAC Solution Domain Decomposition Multiprocessor Computer

Figure 4.1: Illustration of domain decomposition parallel computing using the ADPAC code on
a multiprocessor computing architecture.

Virtual Parallel Machine
(Workstation Cluster) ADPAC Solution Domain Decomposition

Figure 4.2: Illustration of domain decomposition parallel computing using the ADPAC code on
a network-connected workstation cluster computing architecture.

184 NASA CR{206600

DISK

Node 1 Node 2 Node 3 Node 4

Node 5 Node 6 Node 7 Node 8

Node 0
(root)

Network Connections

Nodes 1−8 receive data
from Node 0 via inter−
processor communication

Only Node 0 has access
to data on disk

Figure 4.3: Illustration of ADPAC master-slave coding style and data input/output processing
for parallel computing. Note that only the root process (Node 0) needs access to the data disk.
The con�guration shown represents a nine-node workstation cluster (nodes numbered 0-8).

ADPAC and the various communication libraries, the MPICH library is normally
recommended due to the wide variety of platforms for which the library is available and
the high communication performance achieved with this scheme. The MPICH code also
provides an automatic con�guration utility which simpli�es compiling the library on
di�erent platforms. Complete details for compiling the APPL and MPICH libraries for
every UNIX platform are beyond the scope of this report, and the reader is directed to the
documentation provided with each library for help.

In order to employ the parallel execution features of ADPAC using the
MPICH communication library, the following criteria must be satis�ed:

� The user must have access to a multiprocessor computing platform such as a Silicon
Graphics ORIGIN 2000 or equivalent. Virtual parallel computing platforms can also
be constructed from clusters of network-connected workstations. Examples of this
type of platform are given throughout this section.

� The ADPAC code must be compiled for parallel execution. This implies not only
compilation of the ADPAC source code, but also successful compilation of the
applmpi translation library, and the availability of a Message-Passing Interface
(MPI) library. For general cases, the MPICH library is recommended. In many
cases, computer vendors also provide MPI libraries which have been optimized for
their speci�c architecture. In these cases, it may be desirable to use the proprietary
library, and the vendors instructions should be consulted for proper compilation and
running of the parallel code. A sample UNIX shell script illustrating the basic steps

NASA CR{206600 185

ADPAC Source Code
Native APPL calls for

communication

APPL Communication Library

Figure 4.4: Illustration of ADPAC code programming structure for parallel communication
using the native APPL interprocessor communication interface.

ADPAC Source Code
Native APPL calls for

communication

APPL−PVM Conversion Library

PVM Communication Library

Figure 4.5: Illustration of ADPAC code programming structure for parallel communication
using the native APPL procedure calls, applpvm translation library, and the PVM interprocessor
communication library.

ADPAC Source Code
Native APPL calls for

communication

APPL−MPI Conversion Library

MPI Communication Library
(CHIMP, MPICH, SGI MPI, etc.)

Figure 4.6: Illustration of ADPAC code programming structure for parallel communication
using the native APPL procedure calls, applmpi translation library, and the MPI interprocessor
communication library.

186 NASA CR{206600

required for compiling and running the ADPAC code in serial and in parallel for
both the MPICH and a proprietary MPI libraries is given in Appendix B. This script
was developed for Silicon Graphics ORIGIN-class multiprocessor computers. Similar
scripts for other popular UNIX-based workstations can be created easily by
modifying this script for other computing platforms.

� The ADPAC multiple block mesh �le should contain at least NPROC mesh blocks,
where NPROC is the number of processors to be used in the parallel computing
environment. It is possible to run more blocks than processors, in which case some
processors will provide computational services for more than one block. In this case,
the ADPAC includes a simple algorithm to distribute the blocks among the available
processors. However, this technique does not necessarily provide optimal load
balancing between processors. The user-de�nable casename.blkproc �le is described
later in this chapter to directly specify which blocks are run on a given processor. It
is also possible to have more processors than blocks. In this case, one or more
processors will e�ectively be idle and constitutes a waste of computational resources.
If the user desires to run a job e�ectively on more processors than the current mesh
block limit allows, the SIXPAC and BACPAC codes are available to allow the user to
subdivide the initial problem into more blocks, thus allowing the use of additional
processors. These tools are described in more detail later in this chapter.

MPI -based executables are initiated using the mpirun command as shown below:
mpirun -np numprocs adpac executable < adpac.input > output

In the mpirun syntax above, numprocs is a number representing the number of processors
to employ, adpac executable is the name of the ADPAC executable �le (i.e.,
adpac power challenge mpi), adpac.input is the name of the ADPAC input �le which
must be named adpac.input for parallel jobs, and output is the name of the standard
output �le.

If a communications error is trapped, or if a process has died unexpectedly, the
mpirun function shuts down all of the remaining processes gracefully. This feature is most
important on workstation clusters, which have no built-in mechanism for monitoring
parallel jobs. The mpirun script controls the execution of ADPAC on the various
processors, and when using MPICH , may invoke additional input from the MPICH -based
mpich/util/machines/machines.ARCH �le (see the MPICH implementation notes for
details) to determine the machine names upon which the job is to be executed. For
multiprocessor machines, the machine names are all the same and mpirun simply assigns
processes to individual processors in a single machine. For workstation clusters, the
machines names will vary, and the mpich/util/machines/machines.ARCH �le should
contain a list of machine names to be used in the execution of the job. In theory, the
ADPAC -MPICH system permits parallel execution on both homogeneous and
heterogeneous workstation clusters. The bulk of experience to date has been for
homogeneous workstation clusters. The reader is referred to the man pages and
implementation notes for the MPI library employed for further details.

The host machines in a workstation cluster must be connected by Ethernet, but do
not have to share disks or be part of the same subnet. This provides tremendous exibility
in constructing a workstation cluster. However, most performance bottlenecks
encountered on workstation clusters involve the network. The bene�ts of adding

NASA CR{206600 187

processors may be o�set by poor network performance. The tradeo� varies with the
problem and with the hardware con�guration.

In general, the behavior of ADPAC in parallel is the same as in serial. This is
especially true if there are no input errors. The output �les may be di�erent if there are
input errors. There are two general types of input errors detected in ADPAC . Errors
involving the grid or the input �le will generally be detected by all processors, and the
error messages will appear as they do in serial.

However, if an error is discovered in a boundary condition routine, the output
messages will probably appear di�erently in the output �le, and may not appear at all.
Since ADPAC boundary conditions are applied in parallel, Node 0 does not execute all of
them, but only those involving a block assigned to Node 0. If Node 0 does not encounter
the error, then a di�erent node writes the error message. Since the writing node is out of
sync with Node 0, the error message may be written to a di�erent place in the output �le
than if Node 0 had written it.

Bu�ering of output on the various processors can also cause a problem. Usually,
after an error message is printed, execution is stopped on all processors. If execution fails
before the bu�er is ushed, then output may be lost from some processors. The result is
that an error message could be caught in the bu�er and never appear in the output �le. If
ADPAC terminates for no apparent reason, this may explain the problem. The solution is
to rerun the job without redirecting the output. If output is not redirected, it is normally
not bu�ered, and all of the output will appear at the user's terminal window.

It is also possible to get multiple copies of an error message if more than one
processor encounters the error. Wherever possible, ADPAC has been coded to avoid these
problems, but these unfortunate possibilities still exist. Therefore, running
ADPAC interactively is the best way to track down input problems.

Aside from these considerations, running ADPAC in parallel is very much like
running ADPAC in serial. The input �les are identical, and the output �les are very
similar. The most common problems in running ADPAC in parallel are failing to use the
mpirun function, improperly specifying the parallel con�guration, and attempting to run a
serial executable in parallel.

4.2 SIXPAC (Block Subdivision) Program

SIXPAC , which stands for Subdivision and Information eXchange for Parallel ADPAC
Calculations, enables the user to rede�ne the block structure of an ADPAC job. Using
SIXPAC , large grid blocks can be subdivided to improve load balance, or to make use of
smaller memory processors in parallel calculations. Creating new blocks according to user
speci�cations, SIXPAC generates new input, mesh, restart, and boundata �les for the
subdivided problem. The resulting �les represent a problem equivalent to the original but
with more, smaller blocks. Although the number of unique grid points is unchanged, the
total number of points is larger because of duplication at the additional interfaces.

The motivation for SIXPAC comes from the way ADPAC was parallelized. Rather
than parallelize the interior point solver, ADPAC was parallelized through the boundary

188 NASA CR{206600

conditions. An individual block cannot be run across multiple processors; each processor
must contain only whole blocks. This implies that a problem with a single large block
could not be run in parallel. SIXPAC enables large blocks to be recast as groups of smaller
blocks, so that they can be run in parallel. If a problem already contains multiple mesh
blocks, SIXPAC is not required to run a problem in parallel, but it simpli�es the process of
setting up a problem for optimal parallel performance and load balancing.

4.2.1 SIXPAC Input

The input �les required by SIXPAC are case.input, case.mesh, case.boundata, and
case.sixpac. If a new restart �le is to be created, then a case.restart.old �le is also required.
If a restart �le is to be created for the subdivided problem, the input trigger FREST must
be set equal to 1.0 in the case.input �le. This tells SIXPAC to look for a case.restart.old
�le, and to subdivide it. Of this group, only the case.sixpac �le is added to the standard
ADPAC �les previously de�ned.

The case.sixpac �le contains information which speci�es how the blocks are to be
subdivided. The required information includes the number of original blocks, and how
each block is to be subdivided in each indicial direction (i, j, and k). In each direction,
the number of subdivided blocks, and possibly the locations of the subdivisions, must be
speci�ed. If the number of subdivided blocks in a particular coordinate direction is set to
1, then the block is not divided in that coordinate direction. SIXPAC has some sanity
checks built in to warn users of problems in the case.sixpac �le, and free format input is
used so alignment is not important.

By default, blocks are split into the speci�ed number of (as nearly) equally sized
pieces. If unequal divisions are required in a particular direction, then the location of each
division must be speci�ed in that direction. Unequal divisions are often employed to
preserve levels of multi-grid, or to put the edge of a geometric feature on a block
boundary. Figure 4.7 illustrates how di�erent block strategies a�ect multi-grid.

For equal divisions of the blocks in each direction, the case.sixpac is simple to
construct. A sample case.sixpac �le is listed in Figure 4.8. The �rst line is a comment, and
the second line contains the number of blocks in the original problem. The third line is a
comment, and there is an additional line for each original block, in ascending order. These
lines contain the block number, and the number of subdivided blocks in each coordinate
direction.

In the example SIXPAC input �le, there are two original blocks. The �rst block is to
be divided into 4 pieces along the i coordinate, 2 pieces along the j coordinate, and 1
piece along the k coordinate. The second block is to be divided into 4 pieces along the i
coordinate, 2 pieces along the j coordinate, and 1 piece along the k coordinate. This
means that there will be a total of 16 new blocks generated from the original 2 blocks.

If user-speci�ed divisions are required in a direction, the case.sixpac �le must be
modi�ed following the rules below, and as shown in Figure 4.9

� The number of subdivided blocks in the direction to be speci�ed is set to 0. This
tells SIXPAC that user speci�cations are to follow.

NASA CR{206600 189

1 2113

Subdivision into two equal pieces
(11 points each). Only two levels
of multi−grid are possible, even
though three levels were
possible for the original block.

Subdivision into two unequal
blocks, (13 and 9 points), yields a
grid capable of three levels of
multi−grid, like the original block.

1 13 1 9

1 11 21

1 11 1 11

Original Index

Subdivided Index

Original Index

Subdivided Index

Figure 4.7: Careful block division can preserve levels of multi-grid.

Number of blocks

2

n idiv jdiv kdiv

1 4 2 1

2 4 2 1

Figure 4.8: Sample input �le for SIXPAC block division utility.

190 NASA CR{206600

Number of blocks

2

n idiv jdiv kdiv

1 4 0 1

number of J divides

2

J break points

3 10

2 4 2 1

Figure 4.9: Sample input �le employing user-speci�ed block divisions for SIXPAC block division
utility.

� New lines are added to the case.sixpac immediately following the block to be
modi�ed. First, a comment line is added, which normally identi�es which direction
is being speci�ed. Second, a line containing the number of subdivided blocks is
speci�ed. Third, a comment line is added, which normally indicates that the
following line contains block division points. Fourth, lines are added containing the
division positions for the new blocks.

� The block division positions are the upper limits of the new blocks in terms of the
original block indices. The last division should be the block size in that direction.

� Block division positions must be speci�ed in ascending order.

� If user-speci�ed subdivisions are required in more than one direction of a single
block, then the additions are made in \natural order," that is i �rst, then j and k,
as required.

� All blocks must appear in the case.sixpac �le in ascending order.

In this modi�ed example, there are again two original blocks. The �rst is to have 4 i
divisions, 2 j divisions and 1 k division. The j divisions are to be at j = 3 and j = 10 in
block 1. The second block is to have 4 i divisions 2 j division and 1 k division. This
means that there will be a total of 16 new blocks generated from the original 2 blocks.

4.2.2 SIXPAC Output

The output �les produced by SIXPAC are Ncase.input, Ncase.mesh, Ncase.boundata, and
Ncase.bacpac. If a restart �le is read in, a Ncase.restart.old �le is written, and the new
input �le will be set up to run with the new restart �le. The casename has been prepended
by an \N" to avoid confusion with the original input �les. The newly created �les are
ADPAC input �les which can be run in either serial or parallel versions of ADPAC .

The Ncase.bacpac �le is not required to run ADPAC , but is used by the code
BACPAC to reassemble the blocks into their original, undivided structure. The
Ncase.bacpac �le contains information about the way SIXPAC subdivided the blocks.
There is normally no reason for the user to alter the Ncase.bacpac �le. The form of the
Ncase.bacpac �le is described below in the section describing BACPAC .

NASA CR{206600 191

Running SIXPAC is very much like running ADPAC . The command syntax is:
sixpac < case.input > output

The output �le is similar to an ADPAC output �le, because the routines to read the grid,

the input �le and the boundary data �le are the same as in ADPAC . One addition to the
output �le is a table of the new grid blocks and their sizes. After verifying the new block
structure created by SIXPAC , the output �le can be discarded.

4.3 BACPAC

BACPAC , which stands for Block Accumulation and Consolidation for Parallel ADPAC
Calculations, reassembles subdivided ADPAC �les into their original, undivided form. It is
used in conjunction with SIXPAC , and performs essentially the inverse operation of
SIXPAC . BACPAC can reconstruct mesh, PLOT3D , or restart �les, producing new �les
which are equivalent to what would have been produced had the problem been run with
the original, undivided blocks. Using SIXPAC and BACPAC , a problem can be subdivided
and reconstructed any number of ways to take advantage of available computer resources.

4.3.1 BACPAC Input

BACPAC queries the user for needed information, and reads from standard input
(normally the keyboard). The user is �rst prompted for the casename. The user then
selects which �les are to be reconstructed by entering appropriate responses to questions
about each �le. Due to the potential size of these �les, they are not created by default.

BACPAC expects to �nd a case.bacpac �le which contains information detailing how
the original problem was subdivided. The case.bacpac �le is created automatically by
SIXPAC , and requires no modi�cations by the user. However, if SIXPAC was not used to
create the subdivided blocks, the user must construct a case.bacpac �le in order to run
BACPAC . A sample case.bacpac �le, resulting from the sample SIXPAC input �le shown
in Figure 4.8, appears In Figure 4.10.

In the example, two blocks are subdivided into eight new blocks each (a total of 16
blocks). The dimensions of the original blocks are 73� 10� 9, and there are 4, 2, and 1
subdivided blocks in each coordinate direction for each block. The table underneath each
of the original block size declarations shows the original block number, and the new block
number. The global i, j, and k indices are the position of the bottom right hand corner of
the new block in the original block. For example, the point (1,1,1) in the new block 8 is
the same as the point (17,9,9) in the original block 1. The local im, jm, and km indices
are the block size of the new block. This data essentially maps the new blocks into the
original block structure.

4.3.2 BACPAC Output

The output �les produced by BACPAC are Ncase.mesh.bac, Ncase.p3dabs.bac,
Ncase.p3drel.bac, and Ncase.restart.bac. If the one-equation or two-equation turbulence
models are used options are also available to reconstitute the Ncase.p3d1eq, Ncase.p3d2eq,

192 NASA CR{206600

2 original number of blocks

imax jmax kmax

73 10 9

nblki nblkj nblkk

4 2 1

oldblk newblk global i global j global k local im local jm local km

1 1 1 1 1 19 6 9

1 2 19 1 1 19 6 9

1 3 37 1 1 19 6 9

1 4 55 1 1 19 6 9

1 5 1 6 1 19 5 9

1 6 19 6 1 19 5 9

1 7 37 6 1 19 5 9

1 8 55 6 1 19 5 9

imax jmax kmax

73 10 9

nblki nblkj nblkk

4 2 1

oldblk newblk global i global j global k local im local jm local km

2 1 1 1 1 19 6 9

2 2 19 1 1 19 6 9

2 3 37 1 1 19 6 9

2 4 55 1 1 19 6 9

2 5 1 6 1 19 5 9

2 6 19 6 1 19 5 9

2 7 37 6 1 19 5 9

2 8 55 6 1 19 5 9

Figure 4.10: Sample input �le for BACPAC utility.

NASA CR{206600 193

number of blocks

8

block # proc #

1 0

2 1

3 1

4 2

5 1

6 1

7 2

8 2

Figure 4.11: Sample case.blkproc �le used to distribute mesh blocks over parallel processors
within ADPAC .

Ncase.restart SA, and/or Ncase.restart KR �les. The .bac su�x is used to avoid confusion
with existing �les. Generally the Ncase.mesh.bac need not be created because it is
identical to the original case.mesh �le. If successfully run and converted, the Ncase.* .bac
�les should be moved or copied to replace their original problem equivalents (case.*)
before starting SIXPAC again.

4.4 Parallel ADPAC Block/Processor Assignment

Load balancing is a critical issue for parallel computing tasks. While it is beyond the
scope of this program to perform detailed load balancing analyses for every parallel
computing platform tested, it seems reasonable to provide some form of control in order to
distribute computational tasks e�ciently across a parallel computing network. In the
parallel ADPAC code, this is best accomplished through manipulation of the
block/processor distribution scheme. By default, the parallel operation of the
ADPAC code provides an automatic block-to-processor assignment by dividing up the
blocks as evenly as possible, and to the greatest degree possible assigning sequential block
numbers on a given processor. For example, if 8 blocks were divided between 3 processors,
blocks 1, 2, and 3 would be assigned to processor #0, blocks 4, 5, and 6 to processor #1,
and blocks 7, and 8 to processor #2. Note that the processor numbering scheme begins
with 0. This procedure is nearly optimal when each block is the same size and each
processor has the same computational power. Unfortunately, our experience is that block
sizes and computational resources often vary dramatically. In this regard, a system was
developed which permits the user to specify the block to processor assignment through a
special input �le (case.blkproc). A sample case.blkproc �le is shown in Figure 4.11 for an 8
block mesh distributed across 3 processors.

In the case described by the example �le, block 1 is assigned to processor #0, blocks
2, 3, 5, and 6 to processor #1, and blocks 4, 7, and 8 to processor #2. This block
assignment might be advisable for the case when block 1 is signi�cantly larger in size than
the other blocks, or if processor #0 has less memory or a slower CPU than the remaining
processors. The original block assignment scheme is selected as the default when the
case.blkproc �le is not present. The case.blkproc �le is also used with the

194 NASA CR{206600

ADPAC memory-sizing utility code ADSTAT to determine the largest processor load and
size the ADPAC parameters accordingly.

NASA CR{206600 195

196 NASA CR{206600

Chapter 5

ADPAC INTERACTIVE GRAPHICS
DISPLAY

The ADPAC program is equipped with an option which permits real time interactive
graphics display of ow data in the form of colored contours or velocity vectors on
geometries represented by wiremesh grid surfaces. The interactive graphics are based
largely on routines generated from the PLOT3D visualization program, and many of the
features of this option should be familiar to anyone who has used PLOT3D . All
interactive graphics must be displayed on a Silicon Graphics workstation, IRIX Operating
System 4.0.1 or above. The graphics display can be operated on a single computing
platform, or can be directed across a network for speci�c computer hardware
con�gurations. Thus, it is possible to have a job running remotely on a Cray computer,
with interactive graphics displayed locally on a network-connected Silicon Graphics
workstation. When operating across a network which involves a non-Silicon Graphics
computer, the communication program AGTPLT-LCL must be running on the local display
device in order to capture the graphics commands issued by the remote compute server
(details on AGTPLT-LCL are given below). A graphic illustrating the possible graphics
display operating modes is given in Figure 5.1. It should be mentioned that the interactive
graphics display was actually developed to aid in debugging the multiple block code. The
description of this feature is included in this manual for completeness, but the user should
be cautioned due to the immature nature of this portion of the code. It is also likely that
the graphics option may not port correctly to future releases of the IRIX operating
system, and again, the user is cautioned concerning the use of this feature.

5.1 Setting up the Program

The �rst step in producing the real time interactive graphics display is to correctly
compile the code to include the graphics libraries. This is accomplished by utilizing the
appropriate option in the ADPAC Make�le command. The valid graphics choices are
graphics, csdb graphics, and dbx graphics. These options incorporate various levels of the
included graphics libraries for execution on various machines.

Once the code has been correctly compiled to include the graphics libraries, several

NASA CR{206600 197

SGI

SGI
ADPAC execution and
graphics display on
Silicon Graphics Workstation

ADPAC execution
on remote non−Silicon
Graphics Computer

Graphics display on
a network−connected
Silicon Graphics
Workstation

Graphics display on
a network−connected
Silicon Graphics
Workstation

ADPAC execution
on Silicon Graphics
Workstation

(AGTPLT−LCL
must be running
on this machine)

(Code compiled
with CGL libraries)

(Code compiled
with graphics option)

(Code compiled
with graphics option)

SGI

SGI SGI

SGI
Ethernet

Graphics Transmission via
X−Windows Display System

SGI

SGI
/

Graphics Transmission via
UNIX socket communication

Figure 5.1: ADPAC interactive graphics display network con�guration options.

input parameters must be correctly initiated to engage the graphics subroutines during
the execution of the code. The input keyword FGRAFIX must have a value of 1.0 to
initiate any graphics instructions. The keyword FGRAFINT determines the number of
time-marching iterations between graphics window updates. The keyword FIMGSAV is a
trigger (o� = 0.0, on = 1.0) which determines whether periodic image capturing is
enabled, and the keyword FIMGINT determines the number of time-marching iterations
between image captures.

5.2 Graphics Window Operation

Once the graphics window has been initiated on the local display, and the initial data has
been plotted, the program continues and the graphics display data are updated every
FGRAFINT iterations. This process will continue until the program terminates, or until
the user interrupts the process by pressing the left mouse button once with input focus
directed to the graphics display window. A short time later, (the delay may be quite long
for a network which is burdened), the graphics display will freeze, and the computational
portions of the program will be suspended in order to permit the user to interactively
translate, rotate, or scale the graphics image to their liking. When the display has been
frozen, the viewpoint of the display may be altered by one of several mouse controls. The
left mouse button controls rotation, the right mouse button controls translation, and the
middle mouse button controls scaling (zoom in, zoom out). The mouse-directed viewpoint
controls are identical to those used in PLOT3D [14]. Once the viewpoint has been altered,
program control is returned to ADPAC by hitting the ENTER key on the keyboard with

198 NASA CR{206600

input focus directed to the graphics window. At this point, the code will then return to
the process of performing time-marching iterations, with periodic updating of the graphics
screen.

It is also possible for the user to change the plotting function by entering any one of
the following characters with input focus directed to the graphics window at any time
during the process:

Key Result

p Set ow function to pressure contours

2 Set ow function to velocity vectors

The surfaces plotted by the interactive graphics display is currently hardwired in
the code. A wiremesh representation and the corresponding surface contours are
generated for the i=1, j=1, and k=1 mesh surfaces. This restriction can be modi�ed in
future developments.

5.3 AGTPLT-LCL Program Description

The program AGTPLT-LCL is the receiving program for local graphics display of an
ADPAC job running on a remote, network-connected computing platform. The
AGTPLT-LCL program is a modi�ed version of the NASA-AMES developed
PLOT3D-LCL program. This program can only be run on a Silicon Graphics Workstation
running at level 4.0.1 (or above) of the IRIX operating system. As such, compilation of the
AGTPLT-LCL program has no options, and is performed simply by executing the command
make in the AGTPLT-LCL source directory. Once initiated, the AGTPLT-LCL program
waits for an outside process from ADPAC to communicate with the local workstation, and
graphics commands received from the remote job are displayed locally.

An important consideration in setting up a remote calculation with local graphics
display using AGTPLT-LCL is the manner in which the local display is de�ned in the
calculation. The CGL libraries used to permit the network graphics instructions require
an Internet network address in order to properly transmit the graphics commands to the
correct destination. This de�nition should be provided in the standard input �le following
the normal keyword parameters. At the end of the standard input keyword data, the user
should use an ENDINPUT statement to terminate the normal input stream. The
ENDINPUT statement should then be followed by two blank lines, and then a line
containing the destination network address of the local Silicon Graphics display device.
This speci�cation will ultimately be read by the CGL libraries in setting up the network
connection.

The procedure to set up this network-connected graphics display option would be to
start the job on the remote machine, and then immediately start the
AGTPLT-LCL program on the local display. As long as the correct network address has
been entered in the case.input �le, then the remote program should begin communicating
with the AGTPLT-LCL program, and the local graphics window will begin displaying the
graphics instructions speci�ed by the remote computing program. Again, this capability is
not considered a mature technology in the ADPAC code and is not generally recommended.

NASA CR{206600 199

200 NASA CR{206600

Chapter 6

ADPAC UTILITY PROGRAMS

The standard distribution for the ADPAC program includes a number of tool programs
designed to assist in examining and manipulating data generated for an ADPAC solution.
Although running these programs is generally self-explanatory, a brief description is
provided below to outline the function of each tool program. Prior to compiling any of
these ADPAC utility programs, care should be taken in adjusting the program dimensions
such that it is appropriately sized for the problem of interest. All the ADPAC utility
programs which require reading/writing of mesh or ow solution �les will need to be
compiled including the Scienti�c Database Library (SDBLIB).

6.1 MAKEADGRID Program Description

The standard distribution for the ADPAC program includes a program called
MAKEADGRID which aids the user in setting up a multiple-block mesh �le from isolated
unformatted mesh �les. This program is useful for creating ADPAC compatible
multiple-block meshes from mesh generation programs which do not support the use of
the Scienti�c Database Library (SDBLIB). The MAKEADGRID program is an interactive
program which queries the user for the number of blocks to be assembled for the �nal
mesh, and then requests a �le name for each of the individual mesh blocks. The user is
then requested to name the �nal output �le for the ADPAC compatible multiple-block
mesh. The individual mesh blocks are assembled in the order in which the mesh �le names
are speci�ed, so care must be taken to order these names appropriately.

6.2 COARSEN Tool Program Description

If a ADPAC mesh has been created with more than one level of multi-grid, the
COARSEN utility can be used to create a duplicate geometry case with one multi-grid
level fewer mesh points. The COARSEN program will read in an ADPAC mesh, input �le,
and boundary data �le and remove every other mesh line in each of the computational
directions (i, j, and k). The boundary data �le will be updated to reect the new indices
of the coarsened mesh. An existing restart �le will also be coarsened if triggered by the
proper input variable. The new set of �les will be named by replacing case with caseC. It

NASA CR{206600 201

is sometimes useful to run an ADPAC analysis on the coarsened level to more quickly
evaluate the solution and debug boundary conditions. The restart �les obtained from a
coarsened solution can also be used to restart the pre-COARSEN mesh problem by setting
FREST = -1.0 (see input keyword FREST).

6.3 ADSPIN Tool Program Description

ADSPIN (ADPAC speci�c surface integrator) allows the user to specify any constant i, j,
or k surface and the limits on that surface, and mass averages quantities over that surface.
The output �le includes mass ow rate, average total and static temperatures and
pressures, and average directional and total velocity. The user can also specify a series of
surfaces with the same limits, instead of entering them individually. ADSPIN has the
capability of creating a journal �le for each run was added. The journal �le allows the
running of several similar cases without the tedious manual selection of the same options.

6.4 ADSTAT Tool Program Description

The ADSTAT tool program was designed to provide statistical information about an
ADPAC mesh. The program is run by typing the executable name followed by the
ADPAC casename (adstat case). The ADSTAT program opens the mesh �le and reports
the number of mesh blocks contained within the �le, as well as the individual mesh block
sizes. The ADSTAT program also computes the maximum allowable number of multi-grid
levels (based on mesh size alone) which can be used for an ADPAC run. In addition, the
ADSTAT program computes and reports the minimum required ADPAC array size
parameters for all allowable number of multi-grid levels. This capability is the most useful
feature of the ADSTAT program. If no case.blkproc �le is found in the directory, the
minimum array dimensions reported are for the serial version of ADPAC . In parallel
execution, ADPAC only needs to be dimensioned for the subset of blocks residing on the
individual local processor. ADSTAT can use the mesh block allocation information in the
case.blkproc �le to determine the minimum dimensions required for ADPAC to run in
parallel; depending on block allocation strategy, this can result in a substantial savings in
memory requirements over running multiple ADPAC executables dimensioned for serial
mode.

6.5 AOA2AXI Tool Program Description

The AOA2AXI tool program was designed to compute an axisymmetric average of a 3-D
cylindrical coordinate system solution. The program is restricted to H-type meshes which
possess uniform axisymmetric projections on each mesh plane in the circumferential
direction (this simpli�es the averaging process). When running AOA2AXI , the user is
requested to enter the 3-D mesh and ow (PLOT3D format) �le names. Then, the user is
o�ered the option of redimensionalizing the data, and �nally, the user is requested to enter
the 2-D axisymmetric mesh and ow (PLOT3D format) �le names. The AOA2AXI code
computes the axisymmetric average of the 3-D mesh and ow �le data and stores the

202 NASA CR{206600

CASENAME = case ADPAC case name

FMULTI = 3.0 Three mesh levels for multi-grid

FCART = 0.0 Cartesian/Cylindrical geometry trigger

PITCH = 0.00 Blade pitch used to evaluate periodic boundaries in degrees

FWALLS = 1.0 Wall B.C. trigger (0.0=none, 1.0=SSVI, -1.0=SSIN)

RPM = 0.00 Rotational speed of viscous walls (SSVI) in RPM

FPRINT = 0.0 Level of detail in standard output generated

TOLPERC = 1.0 Percentage of minimum distance used as tolerance

Figure 6.1: Sample input �le for PATCHFINDER utility.

result in the 2-D axisymmetric mesh and ow �les. These data may then be used with
PLOT3D and other graphics visualization tools to examine the axisymmetric average of
the 3-D solution.

6.6 PATCHFINDER Tool Program Description

An ADPAC utility program was developed to aid in the construction of boundary
condition �les for complex, interconnected multiple block mesh systems. The utility,
named PATCHFINDER , reads in an ADPAC mesh (a PLOT3D SDBLIB -binary
multiple-block grid) and determines which blocks share matching faces. As the grid is
read, the faces are striped o� into a separate array. Individual points on these faces are
compared until a \point" match is found. Neighboring points are then compared to �nd a
\cell" match. This also determines the relative directions of the matching indices. From
this cell match, a common face area is swept out and a PATCH boundary condition
statement is written using the bounding indices of the common face area.

After all the PATCH speci�cations have been written, any remaining surfaces not
accounted for will have a solid surface wall (SSVI or SSIN) boundary condition written
out. This allows the user to simply replace a few solid wall statements with the proper
inlet and exit boundary conditions and start running. The PATCHFINDER user input �le
contains approximately ten variables to customize a PATCHFINDER run to each grid
although many grids can be processed without special input. Since the majority of
boundary conditions prescribed in most geometries are block patches and solid walls,
running PATCHFINDER will greatly simplify the generation of a boundary data �le.

Several methods were implemented to accelerate the PATCHFINDER search and
compare process. One of these methods includes using multi-grid. If a mesh is created to
be run with ADPAC using multi-grid, this can also be used to accelerate
PATCHFINDER since boundary conditions must be consistent across multi-grid levels.
Each level of multi-grid decreases the number of face points by a factor of 4; therefore,
with 3 levels of multi-grid a decrease in run time of roughly sixteen times can be expected.

PATCHFINDER uses the same input �le format as ADPAC and some of the same
input variables. The program is executed by redirecting the input �le, similar to
ADPAC (patchfinder < patch.in). A sample input �le (patch.in) is listed in Figure 6.1.

NASA CR{206600 203

6.7 Miscellaneous Tool Programs Description

A number of miscellaneous tool programs are included with the ADPAC distribution
because of their usefulness in manipulating ADPAC mesh and ow �les. A brief
description of these utility programs is listed below. It should be noted that these
programs are designed to deal with SDBLIB binary formatted �les (the ADPAC standard
binary format).

� bin2unf Converts a SDBLIB binary mesh �le to a PLOT3D unformatted mesh �le.

� breakup Creates a series of single-block binary mesh and ow �les from a
multiple-block mesh and ow �le.

� checkbal Reports the processor load for a parallel ADPAC run given an
ADPAC mesh �le and case.blkproc �le.

� countpts Quickly interrogates the header lines from a mesh, ow, or restart �le and
reports grid block sizes and total number of points.

� cutmesh, cutow, cutrest Extracts a sub-domain de�ned through interactive index
selection from an existing mesh, ow, or restart �le.

� owinfo Reads a PLOT3D ow �le and returns minimum and maximum ow
variables and their respective locations, also allows for individual point interrogation.

� owmix Similar to meshmix, but for PLOT3D ow �les.

� meshmix Combines separate multiple-blocked or single-blocked mesh �les into one
multiple-block mesh �le.

� restmix Similar to meshmix, but for ADPAC restart �les.

� restinfo Reads an ADPAC restart �le and returns minimum and maximum ow
variables and their respective locations, also allows for individual point interrogation.

� right2left Converts a right-handed mesh to a left-handed mesh by reversing the
direction of the k index.

� rotate Rotates a multiple-block mesh about the X-axis by a user speci�ed angle.

� scale Translates, scales, and/or mirrors a multiple-block ADPAC mesh.

� swapjk Exchanges the j and k index direction.

� unf2bin Converts a PLOT3D unformatted mesh �le to a SDBLIB binary mesh �le.

6.8 PLOTBC Tool Program Description

In order to facilitate a graphical examination of an ADPAC boundary data �le, a utility
program called PLOTBC was created. The PLOTBC program reads in a user-speci�able
ADPAC mesh and boundary data �le and creates several PLOT3D -compatible command

204 NASA CR{206600

�les. The command �les, in conjunction with the mesh �le, permit the user to graphically
examine (using the PLOT3D program) a number of features of the mesh construction and
boundary condition speci�cations. This utility provides a rapid means of assessing the
completeness of a boundary data �le and provides a visual method for determining the
characteristics of an ADPAC computational model.

The PLOTBC program is invoked by simply running the executable and entering
the ADPAC case name when prompted. After entering the case name, the
PLOTBC program reads in the ADPAC mesh and boundary data �les, extracts the
boundary conditions and organizes them into categories. Each category is then used to
construct a PLOT3D command �le which allows the user to visualize all boundary
conditions in a common category. The resulting PLOT3D command �les and their
functions are listed below:

axes.com Grid index orientation

bcprm.com Inter-block BCPRM boundaries

bcprr.com Inter-block BCPRR boundaries

inlext.com Inow/outow boundaries

mbcavg.com Inter-block MBCAVG boundaries

outline.com Mesh block outline

patch.com Inter-block PATCH boundaries

pint.com Inter-block PINT boundaries

solid.com Solid surfaces (viscous and inviscid, rotating and non-rotating)

Each of the ADPAC boundary conditions identi�ed by PLOTBC is color-coded such
that all the command �les can be read sequentially, thus displaying all the boundaries at
once. Once created, the PLOTBC command �les may be used with PLOT3D by reading
in the corresponding mesh �le, and then invoking one or more of the scripts. Once the
PLOT3D program is initialized, the mesh �le should be read in using the standard
PLOT3D commands, and then the command �les may be invoked by the
PLOT3D command @com�le, where com�le is one of the �les listed above. The action of
the command �le is to essentially de�ne what is to be plotted. The actual plotting is not
performed until the user enters the plot command at the PLOT3D prompt. Additional
details may be found in the PLOT3D User's Manual [14].

In addition to creating PLOT3D scripts, command scripts are also generated by
PLOTBC for FAST and Fieldview , two additional visualization packages. These additional
scripts are output only for the solid surfaces, rather than all the boundary conditions.
Therefore, for boundary condition checking and debugging, PLOT3D should be used, and
for post-processing visualization, the FAST and Fieldview scripts should be used to quickly
render the solid surfaces.

NASA CR{206600 205

206 NASA CR{206600

References

[1] Hall, E. J. and Delaney, R. A., \Investigation of Advanced Counterrotation
Blade Con�guration Concepts for High Speed Turboprop Systems: Task V -
Counterrotation Ducted Propfan Analysis, Final Report," NASA CR-187126,
NASA Contract NAS3-25270, 1992.

[2] Hall, E. J., Topp, D. A., Heidegger, N. J., and Delaney, R. A., \Investigation
of Advanced Counterrotation Blade Con�guration Concepts for High Speed
Turboprop Systems: Task VII - Endwall Treatment Inlet Flow Distortion
Analysis Final Report," NASA CR-195468, NASA Contract NAS3-25270, July
1995.

[3] Hall, E. J., Topp, D. A., Heidegger, N. J., and Delaney, R. A., \Investigation
of Advanced Counterrotation Blade Con�guration Concepts for High Speed
Turboprop Systems: Task VIII - Cooling Flow/Heat Transfer Analysis, Final
Report," NASA CR-195359, NASA Contract NAS3-25270, September 1994.

[4] Rao, K. V. and Delaney, R. A., \Investigation of Unsteady Flow Through a
Transonic Turbine Stage: Part I - Analysis," AIAA Paper 90-2408, 1990.

[5] Jorgensen, P. C. E. and Chima, R. V., \An Unconditionally Stable
Runge-Kutta Method for Unsteady Flows," NASA TM-101347, AIAA Paper
89-0205, 1989.

[6] Rai, M. M., \Unsteady Three-Dimensional Navier-Stokes Simulations of
Turbine Rotor-Stator Interaction," AIAA Paper 87-2058, 1987.

[7] Adamczyk, J. J., \Model Equation for Simulating Flows in Multistage
Turbomachinery," ASME Paper 85-GT-226, 1985.

[8] Dawes, W.N., \Multi-Blade Row Navier-Stokes Simulations of Fan Bypass
Con�gurations," ASME Paper 91-GT-148, 1991.

[9] Goyal, R. K. and Dawes, W. N., \A Comparison of the Measured and
Predicted Flow�eld in a Modern Fan-Bypass Con�guration," ASME Paper
92-GT-298, 1992.

[10] Hall, E. J., \Aerodynamic Modeling of Multistage Compressor Flow�elds -
Part 1: Analysis of Rotor/Stator/Rotor Aerodynamic Interaction", ASME
Paper 97-GT-344, 1997.

[11] Hall, E. J., \Aerodynamic Modeling of Multistage Compressor Flow�elds -
Part 2: Modeling Deterministic Stresses", ASME Paper 97-GT-345, 1997.

[12] Crook, A. J. and Delaney, R. A., \Investigation of Advanced Counterrotation
Blade Con�guration Concepts for High Speed Turboprop Systems: Task IV -

NASA CR{206600 207

Advanced Fan Section Analysis, Final Report," NASA CR-187128, NASA
Contract NAS3-25270, 1992.

[13] Steinbrenner, J., et. al. \The Gridgen 3D Multiple Block Grid Generation
System," Final Report WRDC-TR-90-3022, 1990.

[14] Walatka, P. P., Buning, P. G., Pierce, L., and Elson, P. A., \PLOT3D User's
Manual," NASA TM-101067, March 1990.

[15] Walatka, P. P. and Buning, P. G., \FAST," NASA Ames Research Center,
1990.

[16] \IEEE Standard for Binary Floating-Point Arithmetic," Standards Committee
of the IEEE Computer Society, ANSI/IEEE Std 754-1985, 1985.

[17] \XDR: External Data Representation Standard," Sun Microsystems, Inc.,
June 1987.

[18] Granville, P. S., \Baldwin-Lomax Factors for Turbulent Boundary Layers in
Pressure Gradients," AIAA Journal, Vol. 25, No. 12, pp. 1624-1627, December
1987.

[19] Quealy, A., Cole, G. L., and Blech, R. A., \Portable Programming on
Parallel/Networked Computers Using the Application Portable Parallel
Library (APPL)," NASA TM-106238, July 1993.

[20] Hall, E. J. and Delaney, R. A., \Investigation of Advanced Counterrotation
Blade Con�guration Concepts for High Speed Turboprop Systems: Task VII -
ADPAC User's Manual," NASA CR-195472, NASA Contract NAS3-25270,
July 1995.

[21] Sunderam, \PVM: A Framework for Parallel Distributed Computing,"
Concurrency: Practice & Experience, Vol. 2, No. 4, 1990.

[22] \MPI: A Message-Passing Interface Standard, " Message Passing Interface
Forum, May 5, 1994, University of Tennessee, Knoxville, Report No.
CS-94-230, (see also the International Journal of Supercomputing
Applications, Volume 8, Number 3/4, 1994).

[23] Hall, E. J., Delaney, R. A., and Bettner, J. L., \Investigation of Advanced
Counterrotation Blade Con�guration Concepts for High Speed Turboprop
Systems: Task I - Ducted Propfan Analysis," NASA CR-185217, NASA
Contract NAS3-25270, 1990.

[24] Hall, E. J. and Delaney, R. A., \Investigation of Advanced Counterrotation
Blade Con�guration Concepts for High Speed Turboprop Systems: Task II -
Unsteady Ducted Propfan Analysis - Final Report," NASA CR-187106, NASA
Contract NAS3-25270, 1992.

[25] Barber, T., Choi, D., McNulty, G., Hall, E., and Delaney, R., \Preliminary
Findings in Certi�cation of ADPAC," AIAA Paper 94-2240, June, 1994.

[26] Baldwin, B. S. and Lomax, H., \Thin Layer Approximation and Algebraic
Model for Separated Turbulent Flows," AIAA Paper 78-257, AIAA 16th
Aerospace Sciences Meeting, Huntsville, AL, January 1978.

[27] Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., Computational Fluid

Mechanics and Heat Transfer, McGraw-Hill, New York, New York, 1984.

208 NASA CR{206600

[28] Boussinesq, J., \Essai Sur La Th�eorie Des Eaux Courantes," Mem. Pr�esent�es

Acad. Sci., Vol. 23, Paris, pp. 46-50, 1877.

[29] Jameson, A., Schmidt, W., and Turkel, E., \Numerical Solutions of the Euler
Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping
Schemes," AIAA Paper 81-1259, 1981.

[30] Hung, C. M. and Kordulla, W., \A Time-Split Finite Volume Algorithm for
Three-Dimensional Flow-Field Simulation," AIAA Paper 83-1957, 1983.

[31] Martinelli, L., \Calculation of Viscous Flows with a Multigrid Method," Ph.
D. Dissertation, MAE Department, Princeton University, 1987.

[32] Hollanders, H., Lerat, A., and Peyret, R., \Three-Dimensional Calculation of
Transonic Viscous Flows by an Implicit Method," AIAA Journal, Vol. 23, pp.
1670-1678, 1985.

[33] Radespiel, R., Rossow, C., and Swanson, R. C., \E�cient Cell Vertex
Multigrid Scheme for the Three-Dimensional Navier-Stokes Equations," AIAA

Journal, Vol. 28, No. 8, pp. 1464-1472, 1990.

[34] Arnone, A. A., Liou, M. S., and Povinelli, L. A., \Multigrid Time-Accurate
Integration of Navier-Stokes Equations," AIAA Paper 93-3361-CP, 1993

[35] Arnone, A., Pacciani, R., and Sestini, A., \Multigrid Computations of
Unsteady Rotor-Stator Interaction Using the Navier-Stokes Equations,"
Submitted for Presentation to the 1995 ASME Gas Turbine Conference, 1995.

[36] Jameson, A., \Time Dependent Calculations Using Multigrid, with
Applications to Unsteady Flows Past Airfoils and Wings," AIAA Paper
91-1596, 1991.

[37] Melson, N. D., Sabetrik, M. D., and Atkins, H. L., \Time-Accurate
Navier-Stokes Calculations with Multigrid Acceleration," Presented at the
Sixth Copper Mountain Conference on Multigrid Methods, Copper Mountain,
Colorado, April 4-9, 1993.

[38] Kreiss, H. O., \Initial Boundary Value Problems for Hyperbolic Systems,"
Communications on Pure and Applied Mathematics, Vol. 23, pp. 277-298, 1970.

[39] Engquist, B. and Majda, A., \Absorbing Boundary Conditions for the
Numerical Simulation of Waves," Mathematics of Computation, Vol. 31, pp.
629-651, 1977.

[40] Erdos, J. I., Alzner, E., and McNally, W., \Numerical Simulation of Periodic
Transonic Flow Through a Fan Stage," AIAA Journal, Vol. 15, pp. 1559-1568,
1977.

[41] Giles, M. B., \Nonreecting Boundary Conditions for Euler Equation
Calculations," AIAA Journal, Vol. 28, No. 12, pp. 2050-2058, 1990.

[42] Saxer, A. P., \A Numerical Analysis of 3-D Inviscid Stator/Rotor Interactions
Using Non-Reecting Boundary Conditions," MIT GTL Report 209, 1992.

[43] Spalart, P. R. and Allmaras, S. R., \A One-Equation Turbulence Model for
Aerodynamic Flows," AIAA Paper 92-0439, AIAA 30th Aerospace Sciences
Meeting & Exhibit, Reno, NV, January 1992.

[44] Spalart, P. R. and Allmaras, S. R., \A one-equation turbulence model for
aerodynamic ows," La Recherche A�erospatiale, No. 1, pp. 5-21, 1994.

NASA CR{206600 209

[45] Spalart, P. R., \Improvement in Spalart-Allmaras Model," Boeing Commercial
Airplane Company, March 1993.

[46] Turner, M. G. and Jennions, I. K., \An Investigation of Turbulence Modeling
in Transonic Fans Including a Novel Implementation of an Implicit k��
Turbulence Model," Journal of Turbomachinery, Vol. 115, April 1993, p.
249-260.

[47] Spalding, D. P., \Monograph on Turbulent Boundary Layer," Imperial
College, Mechanical Engineering Department Report TWF/TN/33, 1976.

[48] Wolfshtein, M. W., \The Velocity and Temperature Distribution in One
Dimensional Flow with Turbulence Augmentation and Pressure Gradient,"
International Journal of Heat and Mass Transfer, Vol. 12, p. 301, 1969.

[49] Patankar, S. V. and Spalding, D. B., Heat and Mass Transfers in Boundary

Layers, 2nd Edition, Intertext Books, London, 1970.

[50] Launder, B. E. and Spalding, D. B., \The Numerical Computation of
Turbulent Flows," Computer Methods in Applied Mechanics and Engineering,
Vol. 3, pp.269-289, 1974.

[51] Heidegger, N. J., Hall, E. J., and Delaney, R. A., \Follow-on Low Noise Fan
Aerodynamic Study, Task 15 - Final Report," NASA CR-206599, NASA
Contract NAS3-27394, 1998.

[52] Goldberg, U. C., \Towards a Pointwise Turbulence Model for Wall-Bounded
and Free Shear Flows," Boundary Layer and Free Shear Flows, ASME
FED-Vol. 184, pp. 113-118, 1994.

[53] Baldwin, B. S. and Barth, T. J., \A One-Equation Turbulence Transport
Model for High Reynolds Wall-Bounded Flows," AIAA Paper 91-0610, AIAA
29th Aerospace Sciences Meeting, Reno, NV, January 1991.

[54] Wilcox, D. C., \Turbulence Modeling for CFD," DCW Industries, La Ca~nada,
California, 1993.

[55] Launder, B. E. and Sharma, B. I., \Application of the Energy Dissipation
Model of Turbulence to the Calculation of Flow Near a Spinning Disk,"
Letters in Heat and Mass Transfer, Vol. 1, pp. 131-138, 1974.

210 NASA CR{206600

Appendix A

ADPAC NAVIER-STOKES
NUMERICAL ALGORITHM

The ADPAC code is a general purpose turbomachinery aerodynamic design analysis tool
which has undergone extensive development, testing, and veri�cation [23], [24], [1], [25].
Briey, the ADPAC analysis utilizes a �nite-volume, multi-grid, Runge-Kutta
time-marching solution algorithm to solve a time-dependent form of the 3-D
Reynolds-Averaged Navier-Stokes equations. The selection of turbulence models can be
made from a wide range of models varying in complexity and computational expense. A
relatively standard Baldwin-Lomax [26] turbulence model was incorporated to compute
the turbulent shear stresses. A simple mixing-length turbulence model is also available.
The more complex one-equation Spalart-Allmaras and a two-equation k�R turbulence
models were incorporated into ADPAC for enhanced turbulent ow predictions. Each of
these turbulence models is detailed later within this appendix.

The code employs a multiple-blocked mesh discretization which provides extreme
exibility for analyzing complex geometries. The block gridding technique enables the
coupling of complex, multiple-region domains with common grid interface boundaries
through specialized boundary condition procedures. The ADPAC analysis has been
successfully utilized to predict both the steady state and time-dependent aerodynamic
interactions occurring in modern multistage compressors and turbines.

In this appendix, the governing equations and computational model methodology
for the ADPAC code are described. The de�nitions of the pertinent variables used in this
appendix may be found in Nomenclature.

A.1 Nondimensionalization

To simplify the implementation of the numerical solution, all variables are
nondimensionalized by reference values as follows (note that variables with the caret (i.e.,
�̂) are dimensional variables and consequently variables without a caret (i.e., �) are

NASA CR{206600 211

nondimensional variables):

y =
ŷ

L̂ref

; z =
ẑ

L̂ref

; vx =
v̂x

V̂ref
; vy =

v̂y

V̂ref
; vz =

v̂z

V̂ref

x =
x̂

L̂ref

; r =
r̂

L̂ref

; vax =
v̂ax

V̂ref
; vr =

v̂r

V̂ref
; v� =

~u�

V̂ref

p =
p̂

p̂ref
; � =

�̂

�̂ref
; cp =

ĉp

R̂ref

; cv =
ĉv

R̂ref

; k =
k̂

k̂ref

T =
T̂

T̂ref
; � =

�̂

�̂ref
; k =

k̂

V̂ 2
ref

; R =
R̂

V̂ref L̂ref

;

t =
t̂

L̂ref=V̂ref
; f =

f̂

V̂ 2
ref=L̂ref

; (A.1)

The reference quantities are de�ned as follows:

L̂ref is a constant length scale (user-de�ned DIAM)

p̂ref is normally the inlet total pressure (user-de�ned PREF)

T̂ref is normally the inlet total temperature (user-de�ned TREF)

R̂ref is the freestream gas constant (user-de�ned RGAS)

�̂ref is the freestream or inlet total density (�̂ref =p̂ref / R̂ref / T̂ref)

V̂ref is determined from the freestream total acoustic velocity as:

V̂ref =
ârefp

 =
q
R̂ref T̂ref

�̂ref is determined from the other factors as:

�̂ref = �̂ref V̂ref L̂ref

k̂ref is the freestream thermal conductivity (extracted from user-de�ned
parameters such as and Prandtl number)

A.2 Governing Equations

The ADPAC numerical solution procedure is based on an integral representation of the
strong conservation law form of the 3-D Reynolds-averaged Navier-Stokes equations
expressed in either a cylindrical or Cartesian coordinate system. User input determines
which solution scheme is selected, and can be varied on a block by block basis. The Euler
equations may be derived as a subset of the Navier-Stokes equations by neglecting viscous
dissipation and thermal conductivity terms (i.e., � and k = 0).

The derivations of the various forms of the equations employed in the ADPAC code
are outlined below.

212 NASA CR{206600

A.2.1 Vector Form of Navier-Stokes Equations

The Navier-Stokes equations may be e�ciently described in a coordinate independent
vector form as follows (see e.g. [27]):

Continuity
@�

@t
+r � (�~V) = 0 (A.2)

Momentum
@(�~V)

@t
+r � �~V ~V = �~f +r ��ij (A.3)

Energy
@(�e)

@t
+r � (�e)~V =

@Q

@t
�r � ~q + �~f � ~V +r � (�ij � ~V) (A.4)

Here � is density, ~V is the uid velocity vector, e is the uid total internal energy, t is
time, r is the spatial gradient operator, �ij is the uid stress tensor, ~f is an external
force vector, Q represents added heat, and ~q is the uid conduction heat ux vector.

A.2.2 Reynolds-Averaged Form of Navier-Stokes Equations

Direct computation of turbulent ows using the Navier-Stokes equations in the form above
is simply not practical at this point, and instead, we assume that the turbulence is
stationary (see e.g. Wilcox [54]), and can be e�ectively represented numerically as a
time-averaged e�ect. In this respect, it is useful to derive the Reynolds-averaged form of
the Navier-Stokes equations by introducing time averaging operators. Any instantaneous
ow variable f(x; t) can be decomposed into a time-averaged and a uctuating component
as

f(x; t) = �f(x) + f 0(x; t) (A.5)

The time average �f(x) is de�ned as

�f(x) = lim
T!1

1

T

Z t+T

t
f(x; t)dt (A.6)

Similarly, for compressible ows, it is useful to de�ne the density weighted time average as

f(x; t) = ~f(x) + f 00(x; t) (A.7)

where now the density weighted time averaged variable is de�ned as

~f(x) =
�f

��
(A.8)

Application of the mass-weighted averaging procedure to the Navier-Stokes equations (see
e.g. [27]) yields the Reynolds-averaged Navier-Stokes equations expressed in vector form
as

NASA CR{206600 213

Continuity

@��

@t
+

@

@xj
(��~uj) = 0 (A.9)

Momentum
@

@t
(��~ui) +

@

@xj
(��~ui~uj) = � @�p

@xi
+

@

@xj
(��ij � �u

00

i u
00

j) (A.10)

Energy

@

@t
(�� ~Htotal) +

@

@xj
(��~uj ~Htotal + �u

00

jH
00

total � k
@ �T

@xj
) =

@�p

@t
+

@

@xj
(~ui��ij + u

00

i �ij) (A.11)

where

�ij = �

"
@~ui
@xj

+
@~uj
@xi

!
� 2

3
�ij

@~uk
@xk

#
+ �

2
4
0
@@u

00

i

@xj
+
@u

00

j

@xi

1
A� 2

3
�ij

@ �u
00

k

@xk

3
5 (A.12)

where �ij is the Kronecker delta function (�ij = 1 if i = j and �ij = 0 if i 6= j) and ui
represents the velocity vector components. The complication in this analysis is the
presence of terms of the form �u

00

i u
00

j . These terms are often referred to as Reynolds
stresses, and the speci�cation of these terms is referred to as the turbulent closure
problem. A large portion of turbulence modeling research is dedicated to suitably closing
the system of equations by de�ning procedures to compute the Reynolds stress terms. In
this study, turbulence closure is performed by employing the Boussinesq approximation.
Boussinesq [28] suggested that the apparent turbulent stresses might be related to the
mean strain rate through an eddy viscosity of the form

��u00

i u
00

j = �t

@�ui
@xj

+
@�uj
@xi

!
� 2

3
�ij

�
�t
@�uk
@xk

+ ���k

�
(A.13)

where �k is the kinetic energy of turbulence de�ned as �k = u
00

i u
00

i =2. The resulting
simpli�cation is that all Reynolds stress terms are eliminated in favor of a modi�ed
viscosity �e� = �lam + �t where �t is the eddy viscosity described above. The turbulent
ow thermal conductivity term is also treated as the combination of a laminar and
turbulent quantity as:

ke� = klam + kt (A.14)

For turbulent ows, the turbulent thermal conductivity kt is determined from a turbulent
Prandtl number Prt such that:

Prt =
cp�t
kt

(A.15)

The turbulent Prandtl number is normally chosen to have a value of 0.9. The turbulence
models described later in this report de�ne the means by which �t is prescribed.

Coordinate dependent forms of the Reynolds-averaged Navier-Stokes equations used
in the numerical solution procedures are given in the sections which follow.

214 NASA CR{206600

2−D 3−D

x
y

z

VxVy

Vz

V

x

y

Vx

Vy V

Figure A.1: ADPAC Cartesian coordinate system reference.

A.2.3 Governing Equations for Cartesian Solution

In this section, the governing equations for a Cartesian coordinate system solution are
developed. In this discussion, since all solutions for turbulent ow employ the Boussinesq
approximation, the overscores denoting time averaged (i.e., ��) and density weighted time
averaged (i.e., ~vx) have been removed for simplicity.

The Reynolds-averaged Navier-Stokes equations for a Cartesian coordinate system
may be written as:

@Q

@t
+
@Finv
@x

+
@Ginv

@y
+
@Hinv

@z
= S +

@Fvis
@x

+
@Gvis

@y
+
@Hvis

@z
(A.16)

For a Cartesian solution, the vector of dependent variables Q is de�ned as:

Q =

2
666664

�
�vx
�vy
�vz
�et

3
777775 (A.17)

where the velocity components vx; vy; and vz are the absolute velocity components in the
x, y, and z coordinate directions, respectively (Figure A.1).

The total internal energy is de�ned as:

et =
p

(� 1)�
+
1

2
(v2x + v2y + v2z) (A.18)

The individual ux functions are de�ned as:

Finv =

2
666664

�vx
�v2x + p
�vxvy
�vxvz

�vxHtotal

3
777775 ; Ginv =

2
666664

�vy
�vxvy
�v2y + p
�vyvz

�vyHtotal

3
777775 ; Hinv =

2
666664

�vz
�vxvz
�vyvz

(�v2z + p)
�vzHtotal

3
777775 ; (A.19)

NASA CR{206600 215

Fvis =

2
666664

0
�xx
�xy
�xz
qx

3
777775 ; Gvis =

2
666664

0
�yx
�yy
�yz
qy

3
777775 ; Hvis =

2
666664

0
�zx
�zy
�zz
qz

3
777775 (A.20)

The total enthalpy, Htotal, is related to the total energy by:

Htotal = et +
p

�
(A.21)

The viscous stress and heat ux terms may be expressed as:

�xx = 2�

�
@vx
@x

�
+ �vr � ~V ; (A.22)

�xy = �

��
@vy
@x

�
+

�
@vx
@y

��
; (A.23)

�xz = �

��
@vy
@z

�
+

�
@vz
@x

��
; (A.24)

�yy = 2�

�
@vy
@y

�
+ �vr � ~V ; (A.25)

�yz = �

��
@vy
@x

�
+

�
@vz
@y

��
; (A.26)

�zz = 2�

�
@vz
@z

�
+ �vr � ~V ; (A.27)

qz = vx�xx + vy�xy + vz�xz + k
@T

@x
; (A.28)

qy = vx�yx + vy�yy + vz�yz + k
@T

@y
; (A.29)

qz = vx�zx + vy�zy + vz�zz + k
@T

@z
(A.30)

where � is the �rst coe�cient of viscosity, �v is the second coe�cient of viscosity, and:

r � ~V =
@vx
@x

+
@vy
@y

+
@vz
@z

(A.31)

The remaining viscous stress terms are de�ned through the identities

�yx = �xy; (A.32)

�zy = �yz; (A.33)

�zx = �xz (A.34)

216 NASA CR{206600

2−D 3−D

x

θ

r

VxVθ

Vr

V

x

r

Vx

Vr V

Figure A.2: ADPAC cylindrical coordinate system reference.

A.2.4 Governing Equations for Cylindrical Coordinate Solution

In this section, the governing equations for a rotating cylindrical coordinate system
solution are developed. The rotating coordinate system permits the solution of rotating
geometries such as turbomachinery blade rows. The rotation is always assumed to be
about the x axis In this discussion, since all solutions for turbulent ow employ the
Boussinesq approximation, the overscores denoting time averaged (i.e., ��) and density
weighted time averaged (i.e., ~vr) have been removed for simplicity.

The Reynolds-averaged Navier-Stokes equations for a rotating cylindrical coordinate
system may be written as:

@Q

@t
+
@Finv
@x

+
@Ginv

@r
+
1

r

@Hinv

@�
= K +

@Fvis
@x

+
@Gvis

@r
+
1

r

@Hvis

@�
(A.35)

For solutions employing the cylindrical coordinate system, the vector form of the
equations contains only minor deviations from the Cartesian form, but the components of
the solution and ux vectors must be rede�ned. For a cylindrical coordinate solution, the
vector of dependent variables Q is de�ned as:

Q =

2
666664

�
�vx
�vr
�v�
�et

3
777775 (A.36)

where the velocity components vx; vr; and v� are the absolute velocity components in the
axial, radial, and circumferential coordinate directions, respectively (Figure A.2).

The ux vectors are expressed as:

NASA CR{206600 217

Finv =

2
666664

�vx
�v2x + p
�vxvr
�vxwrel

�vxHtotal

3
777775 ; Ginv =

2
666664

�vr
�vxvr
�v2r + p
�vrwrel

�vrHtotal

3
777775 ; Hinv =

2
666664

�v�
�vxv�
�vrv�

�v�wrel + p)
�wrelHtotal

3
777775 ; (A.37)

Fvis =

2
666664

0
�xx
�xr
�x�
qx

3
777775 ; Gvis =

2
666664

0
�rx
�rr
�r�
qr

3
777775 ; Hvis =

2
666664

0
��x
��r
���
q�

3
777775 (A.38)

and the cylindrical coordinate system source term becomes:

K =

2
666664

0
0

�v2
�
+p

r � ���
r

��vrv�
r + �r�

r
0

3
777775 (A.39)

The total enthalpy, H, is related to the total energy by:

Htotal = et +
p

�
(A.40)

The viscous stress and heat ux terms may be expressed as:

�xx = 2�

�
@vx
@x

�
+ �vr � ~V ; (A.41)

�xr = �

��
@vr
@x

�
+

�
@vx
@r

��
; (A.42)

�x� = 2�

��
@v�
@x

�
+

�
1

r

@vx
@�

��
; (A.43)

�rr = 2�

�
@vr
@r

�
+ �vr � ~V ; (A.44)

�r� = �

"�
1

r

@vr
@�

�
+

r
@ v�

r

@r

!#
; (A.45)

��� = 2�

�
1

r

@v�
@�

�
+ �vr � ~V + 2�

vr
r
; (A.46)

qx = vx�xx + vr�xr + v��x� + k
@T

@x
; (A.47)

qr = vx�rx + vr�rr + v��r� + k
@T

@y
; (A.48)

q� = vx��x + vr��r + v���� + k
@T

@�
(A.49)

218 NASA CR{206600

where � is the �rst coe�cient of viscosity, �v is the second coe�cient of viscosity, and:

r � ~V =
@vx
@x

+
@vr
@r

+
1

r

@v�
@�

+
vr
r

(A.50)

The remaining viscous stress terms are de�ned through the identities:

�rx = �xr; (A.51)

��r = �r�; (A.52)

��x = �x� (A.53)

A.3 Fluid Properties

The primary working uid is assumed to be air acting as a perfect gas, thus the ideal gas
equation of state has been used. Fluid properties such as speci�c heats, speci�c heat ratio,
and Prandtl number are assumed to be constant. The uid viscosity is temperature
dependent and is derived from the Sutherland (see e.g. [27]) formula:

� = C1
(T)

3

2

T +C2
(A.54)

where for air the coe�cients are speci�ed as:

C1 = 2:2710�8
lbm

ft� sec
C2 = 198:72�R

The so-called second coe�cient of viscosity �v is �xed according to:

�v = �2

3
� (A.55)

The thermal conductivity is determined from the viscosity and the de�nition of the
Prandtl number as:

k =
cp�

Pr
(A.56)

A.4 Numerical Formulation

The numerical formulation for the ADPAC code is provided in the subsections below.

A.4.1 Finite Volume Discretization

Integration of the three-dimensional di�erential form of the Navier-Stokes equations over a
�nite control volume yields an equation of the form:Z Z Z

@

@t
(Q)dV + Linv(Q) = Lvis(Q) +

Z Z Z
DdV (A.57)

NASA CR{206600 219

where:

Linv(Q) =

Z Z
dA

[FinvdA1 +GinvdA2 +HinvdA3] (A.58)

and:

Lvis(Q) =

Z Z
dA

[FvisdA1 +GvisdA2 +HvisdA3] (A.59)

The Gauss divergence theorem has been employed to convert several volume integrals to
surface ux integrals, which simpli�es the numerical evaluation of many terms (see e.g.
[27]). The inviscid (convective) and viscous (di�usive) ux contributions are expressed
separately by the operators Linv and Lvis, respectively. The vector of dependent variables
Q and other terms are described separately for both a Cartesian and a cylindrical
coordinate system above.

The discrete numerical solution is developed from the integral governing equations
derived in the previous sections by employing a �nite volume solution procedure. This
procedure closely follows the basic scheme described by Jameson [29]. In order to
appreciate and utilize the features of the ADPAC solution system, the concept of a
multiple-block grid system must be fully understood. It is expected that the reader
possesses at least some understanding of the concepts of computational uid dynamics
(CFD), so the use of a numerical grid to discretize a ow domain should not be foreign.
Many CFD analyses rely on a single structured ordering of grid points upon which the
numerical solution is performed. Multiple-block grid systems are di�erent only in that
several structured grid systems are used in harmony to generate the numerical solution.
The domain of interest is subdivided into one or more structured arrays of hexahedral
cells. Each array of cells is referred to as a \block", and the overall scheme is referred to
as a multiple blocked mesh solver as a result of the ability to manage more than one
block. This concept is illustrated graphically in two dimensions for the ow through a
nozzle in Figure 2.1 along with the accompanying text.

The solution for each mesh block in a multiple-block grid is computed identically,
and therefore the numerical approach is described for a single mesh block. In any given
mesh block, the numerical grid is used to de�ne a set of hexahedral cells, the vertices of
which are de�ned by the eight surrounding mesh points. This construction is illustrated in
Figure A.3.

The cell face surface area normal vector components dAx, dAy, and dAz are
calculated using the cross product of the diagonals de�ned by the four vertices of the
given face, and the cell volume is determined by a procedure outlined by Hung and
Kordulla [30] for generalized nonorthogonal cells. The integral relations expressed by the
governing equations are determined for each cell by approximating the area-integrated
convective and di�usive uxes with a representative value along each cell face, and by
approximating the volume-integrated terms with a representative cell volume weighted
value. The discrete numerical approximation to the governing equation then becomes:

(V)Q
n+1
i;j;k �Qn

i;j;k

�t
= (Finv(Q)i+ 1

2
;j;k � Finv(Q)i� 1

2
;j;k (A.60)

+Ginv(Q)i;j+ 1

2
;k �Ginv(Q)i;j� 1

2
;k

220 NASA CR{206600

i,j,k

i,j−1,k

i,j−1,k−1i−1,j−1,k−1

i−1,j−1,k

i−1,j,k−1

i−1,j,k

i,j,k−1

SA

V
i,j,k

k

i

j

Figure A.3: Three-dimensional �nite volume cell.

+Hinv(Q)i;j;k+ 1

2

�Hinv(Q)i;j;k� 1

2

+Fvis(Q)i+ 1

2
;j;k � Fvis(Q)i� 1

2
;j;k

+Gvis(Q)i;j+ 1

2
;k �Gvis(Q)i;j� 1

2
;k

+Hvis(Q)i;j;k+ 1

2

�Hvis(Q)i;j;k� 1

2

)

+(V)K +Di;j;k(Q)

Following the algorithm de�ned by Jameson [29], it is convenient to store the ow
variables as a representative value for the interior of each cell, and thus the scheme is
referred to as cell-centered. Here, i; j; k represents the local cell indices in the structured
cell-centered array, V is the local cell volume, �t is the calculation time interval, and Di;j;k

is an arti�cial numerical dissipation function which is added to the governing equations to
aid numerical stability, and to eliminate spurious numerical oscillations in the vicinity of
ow discontinuities such as shock waves. Indicial expressions such as i+ 1

2 ; j; k represents
data evaluated at the cell face, or interface between two adjacent volumes. The discrete
convective uxes are constructed by using a representative value of the ow variables Q
which is determined by an algebraic average of the values of Q in the cells lying on either
side of the local cell face. A conceptual illustration of the �nite-volume, cell centered data
approach, and the subsequent convective ux evaluation process for a cell face are given
on Figure A.4. Viscous stress terms and thermal conduction terms are constructed by
applying a generalized coordinate transformation to the governing equations as follows:

� = �(x; y; z); � = �(x; y; z); � = �(x; y; z) (A.61)

The chain rule may then be used to expand the various derivatives in the viscous stresses
as:

@

@x
=

@�

@x

@

@�
+
@�

@x

@

@�
+
@�

@x

@

@�
; (A.62)

@

@y
=

@�

@y

@

@�
+
@�

@y

@

@�
+
@�

@y

@

@�
; (A.63)

NASA CR{206600 221

BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB

Qi+1/2,j,k = 0.5 (Qi+1,j,k+Qi,j,k)

Qi+1,j,k

Qi,j,k

Fi+1/2,j,k = F(Qi+1/2,j,k)

Cell
 Fac

e

Cell−Centered
Data Storage
Location

Figure A.4: ADPAC �nite volume cell centered data con�guration and convective ux evalua-
tion process.

@

@z
=

@�

@z

@

@�
+
@�

@z

@

@�
+
@�

@z

@

@�
; (A.64)

The transformed derivatives may now be easily calculated by di�erencing the variables in
computational space (i corresponds to the � direction, j corresponds to the � direction,
and k corresponds to the � direction), and utilizing the appropriate identities for the
metric di�erences (see e.g. [27]). This process is illustrated schematically in Figure A.5.

A.4.2 Runge-Kutta Time Integration

The time-stepping scheme used to advance the discrete numerical representation of the
governing equations is a multistage Runge-Kutta integration. An m stage Runge-Kutta
integration for the discretized equations is expressed as:

Q1 = Qn � �1�t[L(Q
n) +D(Qn)];

Q2 = Qn � �2�t[L(Q1) +D(Qn)];

Q3 = Qn � �3�t[L(Q2) +D(Qn)];

Q4 = Qn � �4�t[L(Q3) +D(Qn)];

::::

::::

Qm = Qn � �m�t[L(Qm�1) +D(Qn)];

Qn+1 = Qm (A.65)

where:

L(Q) = Linv(Q)� Lvis(Q) (A.66)

222 NASA CR{206600

Qi+1,j,k

Cell Face

Qi,j,k

Qi+1/2,j−1,k

Qi+1/2,j+1,k

Qi+1/2,j,k+1

Qi+1/2,j,k− 1

= Qi+1,j,k − Qi,j,k

= 0.5 (Qi+1/2,j+1,k − Qi+1/2,j−1,k)

= 0.5 (Qi+1/2,j,k+1 − Qi+1/2,j,k−1)

δQ
δη

δQ
δζ

δQ
δξ

j, ξ

k, ζ

i, η

Figure A.5: ADPAC �nite volume cell centered data con�guration and di�usive ux evaluation
process.

NASA CR{206600 223

For simplicity, viscous ux contributions to the discretized equations are only calculated
for the �rst stage, and the values are frozen for the remaining stages. This reduces the
overall computational e�ort and does not appear to signi�cantly alter the solution. It is
also generally not necessary to recompute the added numerical dissipation terms during
each stage. Three di�erent multistage Runge-Kutta schemes (2 four-stage schemes, and 1
�ve-stage scheme) are available in the ADPAC code.

The coe�cients for the four stage Runge-Kutta time-marching scheme employed in
this study are listed below:

�1 =
1

8
; �2 =

1

4
; �3 =

1

2
; �4 = 1 (A.67)

A linear stability analysis of the four stage Runge-Kutta time-stepping scheme utilized
during this study indicate that the scheme is stable for all calculation time increments �t
which satisfy the stability criteria CFL � 2

p
2. Based on convection constraints alone,

the CFL number may be de�ned in a one-dimensional manner as:

CFL =
�t

jvxj+a
�x

(A.68)

In practice, the calculation time interval must also include restrictions resulting from
di�usion phenomena. The time step used in the numerical calculation results from both
convective and di�usive considerations and is calculated as:

�t = CFL

1:0

�i + �j + �k + �i + �j + �k

!
(A.69)

where the convective and di�usive coordinate wave speeds (� and �, respectively) are
de�ned as:

�i = V=(~V � ~Si + a) (A.70)

�i =
�(V)2

C�t(S2)�
(A.71)

The factor C�t is a \safety factor" of sorts, which must be imposed as a result of the
limitations of the linear stability constraints for a set of equations which are truly
nonlinear. This factor was determined through numerical experimentation and normally
ranges from 2.5-7.5.

For steady ow calculations, an acceleration technique known as local time stepping
is used to enhance convergence to the steady-state solution. Local time stepping utilizes
the maximum allowable time increment at each point during the course of the solution.
While this destroys the physical nature of the transient solution, the steady-state solution
is una�ected and can be obtained in fewer iterations of the time-stepping scheme. For
unsteady ow calculations, of course, a uniform value of the time step �t must be used at
every grid point to maintain the time-accuracy of the solution. Other convergence
enhancements such as implicit residual smoothing and multi-grid (described in later
sections) are also applied for steady ow calculations.

224 NASA CR{206600

A.4.3 Dissipation Function

In order to prevent odd-even decoupling of the numerical solution, non-physical
oscillations near shock waves, and to obtain rapid convergence for steady state solutions,
arti�cial dissipative terms are added to the discrete numerical representation of the
governing equations. The added dissipation model is based on the combined works of
Jameson et al. [29], Martinelli [31], and Swanson et al. [33]. A blend of fourth and second
di�erences is used to provide a third order background dissipation in smooth ow regions
and �rst order dissipation near discontinuities. The discrete equation dissipative function
is given by:

Di;j;k(Q) = (D2
i �D4

i +D2
j �D4

j +D2
k �D4

k)Qi;j;k (A.72)

The second and fourth order dissipation operators are determined by:

D2
�Qi;j;k = 5�((��)i+ 1

2

�2
i+ 1

2
;j;k

)4� Qi;j;k (A.73)

D4
�Qi;j;k = 5�((��)i+ 1

2

�4
i+ 1

2
;j;k

)4� 5� 4� Qi;j;k (A.74)

where 4� and 5� are forward and backward di�erence operators in the � direction. In
order to avoid excessively large levels of dissipation for cells with large aspect ratios, and
to maintain the damping properties of the scheme, a variable scaling of the dissipative
terms is employed which is an extension of the two dimensional scheme given by
Martinelli [31]. The scaling factor is de�ned as a function of the spectral radius of the
Jacobian matrices associated with the �, �, and � directions and provides a scaling
mechanism for varying cell aspect ratios through the following scheme:

(��)i+ 1

2
;j;k = (��)i+ 1

2
;j;k�i+ 1

2
;j;k (A.75)

The function � controls the relative importance of dissipation in the three coordinate
directions as:

�i+ 1

2
;j;k = 1 +max

0
@((��)i+ 1

2
;j;k

(��)i+ 1

2
;j;k

)�; (
(��)i+ 1

2
;j;k

(��)i+ 1

2
;j;k

)�

1
A (A.76)

The directional eigenvalue scaling functions are de�ned by:

(��)i+ 1

2
;j;k = Ui+ 1

2
;j;k

_(S�)i+ 1

2
;j;k + c(S�)i+ 1

2
;j;k (A.77)

(��)i+ 1

2
;j;k = Ui+ 1

2
;j;k

_(S�)i+ 1

2
;j;k + c(S�)i+ 1

2
;j;k (A.78)

(��)i+ 1

2
;j;k = Ui+ 1

2
;j;k

_(S�)i+ 1

2
;j;k + c(S�)i+ 1

2
;j;k (A.79)

The use of the maximum function in the de�nition of � is important for grids where ��=��
and ��=�� are very large and of the same order of magnitude. In this case, if these ratios
are summed rather than taking the maximum, the dissipation can become too large,
resulting in degraded solution accuracy and poor convergence. Because three-dimensional
solution grids tend to exhibit large variations in the cell aspect ratio, there is less freedom
in the choice of the parameter � for this scheme, and a value of 0.5 was found to provide a
robust scheme.

NASA CR{206600 225

The coe�cients in the dissipation operator use the solution pressure as a sensor for
the presence of shock waves in the solution and are de�ned as:

�2
i+ 1

2
;j;k

= �2max(�i�1;j;k; �i; j; k; �i+1;j;k; �i+2;j;k) (A.80)

�i;j;k =
j(pi�1;j;k � 2pi;j;k + pi+1;j;k)j
(pi�1;j;k + 2pi;j;k + pi+1;j;k)

(A.81)

�4
i+ 1

2
;j;k

= max(0; �4 � �2
i+ 1

2
;j;k

) (A.82)

where �2; �4 are user-de�ned constants. Typical values for these constants are:

�2 =
1

2
�4 =

1

64
(A.83)

The dissipation operators in the � and � directions are de�ned in a similar manner.

A.4.4 Implicit Residual Smoothing

The stability range of the basic time-stepping scheme can be extended using implicit
smoothing of the residuals. This technique was described by Hollanders et al. [32] for the
Lax-Wendro� scheme and later developed by Jameson [29] for the Runge-Kutta scheme.
Since an unsteady ow calculation for a given geometry and grid is likely to be
computationally more expensive than a similar steady ow calculation, it would be
advantageous to utilize this acceleration technique for time-dependent ow calculations as
well. In an analysis of two dimensional unsteady ows, Jorgensen and Chima [5]
demonstrated that a variant of the implicit residual smoothing technique could be
incorporated into a time-accurate explicit method to permit the use of larger calculation
time increments without adversely a�ecting the results of the unsteady calculation. The
implementation of this residual smoothing scheme reduced the CPU time for their
calculation by a factor of �ve. This so-called time-accurate implicit residual smoothing
operator was then also demonstrated by Rao and Delaney [4] for a similar two-dimensional
unsteady calculation and by Hall, et al. [24],[1] for several three-dimensional
time-dependent ows. Although this \time-accurate" implicit residual smoothing scheme
is not developed theoretically to accurately provide the unsteady solution, it can be
demonstrated that errors introduced through this residual smoothing process are very
local in nature, and are generally not greater than the discretization error.

The standard implicit residual smoothing operator can be written as:

(1� �45)R�m = Rm (A.84)

To simplify the numerical implementation, this standard operator is traditionally
approximately factored into the following coordinate speci�c form:

(1� �� 4� 5�)(1 � �� 4� 5�)(1� �� 4� 5�) �Rm = Rm (A.85)

where the residual Rm is de�ned as:

Rm = �m
�t

V
(Qm �Dm); m = 1;mstages (A.86)

226 NASA CR{206600

for each of the m stages in the Runge-Kutta multistage scheme. Here Qm is the sum of
the convective and di�usive terms, Dm the total dissipation at stage m, and �Rm the �nal
(smoothed) residual at stage m.

The smoothing reduction is applied sequentially in each coordinate direction as:

R�m = (1� �� 4� 5�)
�1Rm

R��m = (1� �� 4� 5�)
�1R�m

R���m = (1� �� 4� 5�)
�1R��m

�Rm = R���m (A.87)

where each of the �rst three steps above requires the inversion of a scalar tridiagonal
matrix. In general, it is desirable to apply the smoothing at each stage of the
Runge-Kutta time-marching procedure.

The use of constant coe�cients (�) in the implicit treatment has proven to be useful,
even for meshes with high aspect ratio cells, provided additional support such as enthalpy
damping (see [29]) is introduced. Unfortunately, the use of enthalpy damping, which
assumes a constant total enthalpy throughout the ow�eld, cannot be used for an unsteady
ow, and many steady ows where the total enthalpy may vary. It has been shown that
the need for enthalpy damping can be eliminated by using variable coe�cients in the
implicit treatment which account for the variation of the cell aspect ratio. Martinelli [31]
derived a functional form for the variable coe�cients for two-dimensional ows which are
functions of characteristic wave speeds. In this study, the three-dimensional extension
described by Radespiel et al. [33] is utilized, and is expressed as:

�� = max

0;
1

4
[

CFL

CFLmax

1 +max(r���r
�
��)

1 +max(r��r��)
]2 � 1

!
(A.88)

�� = max

0;
1

4
[

CFL

CFLmax

1 +max(r���r
�
��)

1 +max(r��r��)
]2 � 1

!
(A.89)

�� = max

0;
1

4
[

CFL

CFLmax

1 +max(r���r
�
��)

1 +max(r��r��)
]2 � 1

!
(A.90)

CFL represents the local value of the CFL number based on the calculation time
increment �t, and CFLmax represents the maximum stable value of the CFL number
permitted by the unmodi�ed scheme (normally, in practice, this is chosen as 2.5 for a four
stage scheme and 3.5 for a �ve stage scheme, although linear stability analysis suggests
that 2

p
2, and 3.75 are the theoretical limits for the four and �ve stage schemes,

respectively). From this formulation it is obvious then that the residual smoothing
operator is only applied in those regions where the local CFL number exceeds the
stability-limited value. In this approach, the residual operator coe�cient becomes zero at
points where the local CFL number is less than that required by stability, and the
inuence of the smoothing is only locally applied to those regions exceeding the stability
limit. Practical experience involving unsteady ow calculations suggests that for a
constant time increment, the majority of the ow�eld utilizes CFL numbers less than the
stability-limited value to maintain a reasonable level of accuracy. Local smoothing is
therefore typically required only in regions of small grid spacing, where the

NASA CR{206600 227

stability-limited time step is very small. Numerical tests both with and without the
time-accurate implicit residual smoothing operator for the ows of interest in this study
were found to produce essentially identical results, while the time-accurate residual
smoothing resulted in a decrease in CPU time by a factor of 2-3. In practice, the actual
limit on the calculation CFL number were determined to be roughly twice the values
speci�ed for CFLmax, above.

A.4.5 Multi-grid Convergence Acceleration

Multi-grid (not to be confused with a multiple-blocked grid!) is a numerical solution
technique which attempts to accelerate the convergence of an iterative process (such as a
steady ow prediction using a time-marching scheme) by computing corrections to the
solution on coarser meshes and propagating these changes to the �ne mesh through
interpolation. This operation may be recursively applied to several coarsenings of the
original mesh to e�ectively enhance the overall convergence. In the present multi-grid
application, coarse meshes are derived from the preceding �ner mesh by eliminating every
other mesh line in each coordinate direction as shown in Figure 2.6. As a result, the
number of multi-grid levels (coarse mesh divisions) is controlled by the mesh size, and, in
the case of the ADPAC code, also by the indices of the embedded mesh boundaries (such
as blade leading and trailing edges, etc.) (see Figure 2.6). These restrictions suggest that
mesh blocks should be constructed such that the internal boundaries and overall size
coincide with numbers which are compatible with the multi-grid solution procedure; the
mesh size should be 1 greater than any number which can be divided by 2 several times
and remain whole numbers (i.e., 9, 17, 33, 65).

The multi-grid procedure is applied in a V-cycle as shown in Figure A.6, whereby
the �ne mesh solution is initially \injected" into the next coarser mesh, the appropriate
forcing functions are then calculated based on the di�erences between the calculated
coarse mesh residual and the residual which results from a summation of the �ne mesh
residuals for the coarse mesh cell, and the solution is advanced on the coarse mesh. This
sequence is repeated on each successively coarser mesh until the coarsest mesh is reached.
At this point, the correction to the solution (Qn+1

i;j;k �Qn
i;j;k) is interpolated to the next

�ner mesh, a new solution is de�ned on that mesh, and the interpolation of corrections is
applied sequentially until the �nest mesh is reached. Following a concept suggested by
Swanson et al. [33], it is sometimes desirable to smooth the �nal corrections on the �nest
mesh to reduce the e�ects of oscillations induced by the interpolation process. A constant
coe�cient implementation of the implicit residual smoothing scheme described in Section
3.5 is used for this purpose. The value of the smoothing constant is normally taken to be
0.2.

A second multi-grid concept which should be discussed is the so-called \full"
multi-grid startup procedure. The \full" multi-grid method is used to initialize a solution
by �rst computing the ow on a coarse mesh, performing several time-marching iterations
on that mesh (which, by the way could be multi-grid iterations if successively coarser
meshes are available), and then interpolating the solution at that point to the next �ner
mesh, and repeating the entire process until the �nest mesh level is reached. The intent
here is to generate a reasonably approximate solution on the coarser meshes before
undergoing the expense of the �ne mesh multi-grid cycles. Again, the \full" multi-grid

228 NASA CR{206600

1 1

4

3 3

2 2

Mesh
Level

C
oa

rs
e

F
in

e

Inject Solution

In
te

rp
ol

at
e

Cor
re

ct
io

ns

Advance Solution on Current Mesh Level

Update Solution with Corrections

Figure A.6: Multi-grid V-cycle strategy.

technique only applies to starting up a solution.

A.4.6 Implicit Time-Marching Algorithm Procedure

The development of an implicit time-marching strategy for the ADPAC code was initiated
during this study. This e�ort was directed at improving the computational e�ciency of the
ADPAC code for lengthy time-dependent calculations, particularly for viscous ows, where
the restricted time step of the explicit time-marching algorithm due to highly clustered
meshes is prohibitively expensive. The implicit algorithm type selected was chosen to take
advantage of the multi-grid solution capabilities of the explicit ADPAC time marching
algorithm, and the various steady state convergence acceleration techniques (implicit
residual smoothing, local time stepping, etc.) which have been incorporated into the code.

The implicit algorithm is best explained through derivation. The original explicit
steady state iterative numerical algorithm in the ADPAC code ultimately solves an
equation of the form:

@Q

@t
= �R(Q) (A.91)

where Q is the vector of dependent variables, t is time, and R(Q) is the residual which
includes convective, di�usive, and arti�cial dissipation uxes. The solution is typically
advanced in time t until the residual approaches zero, or simply @Q=@t = 0 which implies
a time-independent (steady state) solution. The modi�ed solution scheme introduces a
�ctitious time � , and solves an equation of the form:

@Q

@�
=

@Q

@t
+R(Q) = R�(Q) (A.92)

NASA CR{206600 229

Now the solution for driving the new residual R�(Q) to zero can be advanced by marching
in � using all of the previously developed steady state convergence acceleration techniques,
and the �nal solution satis�es the equation:

@Q

@t
+R(Q) = 0 (A.93)

which is the desired time-dependent solution. This approach follows the work of
Jameson [29] and the more recent applications of Arnone et al. [34]. Derivatives with
respect to the real time t are discretized using either a 2 point or a 3 point backward
formula which results in an implicit scheme which is second order accurate in time. The
discretized equation solved at each time level therefore becomes:

@Q

@�
=

3Qn+1 � 4Qn +Qn�1

2�t
+R(Qn+1) = R�(Qn+1) (A.94)

where the subscript n is associated with real time. Between each real time step, then, the
solution is advanced multiple iterations in the non-physical time to satisfy the
time-accurate equations. The pseudo time numerical approach was recently demonstrated
for time-dependent ows in turbomachinery geometries by Arnone et al. [35].

The time discretization described above is fully implicit; however, when solved by
marching in � , stability problems can occur when the time increment in the pseudo time
variable �� exceeds the physical time step �t. Linear stability analysis (see e.g. [34])
indicates that the pseudo time increment �� must be less than 2=3CFL��t where CFL�

is the ratio of the local CFL number to the maximum CFL number of the explicit
time-marching scheme.

Numerical experiments for the algorithm with the physical time derivative term
treated in an explicit manner indicated that the algorithm exhibited a physical time step
dependent divergent behavior for many problems. This formulation of the algorithm
closely followed the development proposed by Jameson [36]. No indication of such
behavior was identi�ed in Jameson's [36] paper. Arnone [34] identi�ed a time step
modi�er which sought to circumvent the unstable region by lowering the pseudo time
increment in relation to the physical time step. This modi�cation was originally included
in the ADPAC formulation, but did not completely prohibit the instability. Further study
of the problem, and, in particular, the assistance of researchers at the NASA-Langley
Research Center, have identi�ed the explicit treatment of the physical time derivative
term as the source of the conditional stability. In a recent paper by Melson, Sanetrik, and
Atkins [37], the stability characteristics of the implicit iterative algorithm with both
explicit and implicit treatments of the physical time derivative term were analyzed. The
implicit treatment of this term was found to be unconditionally stable, while the explicit
treatment of the algorithm was conditionally stable based on the value of ��=�t, where
�� is the pseudo time derivative time step, while �t is the the physical time derivative
time step. Small values of ��=�t (corresponding to low CFL numbers) push the
algorithm towards an unstable operation. Jameson [36] suggests that CFL numbers of 200
or greater be used for the explicit treatment, which is consistent with low values of ��=�t,
or improved stability. The ADPAC code was modi�ed to utilize an implicit treatment of
the time derivative term. The implicit treatment of the physical time derivative greatly
enhances the e�ectiveness of the implicit ow solver for a wider range of problems.

230 NASA CR{206600

A further improvement of the implicit algorithm was discovered by Melson et al.
This modi�cation is based on the realization that the term Qn+1 actually appears on both
sides of the implicit time marching equation described above. It should be possible,
therefore, to collect these terms and modify the time marching equation in a more \fully
implicit" manner (in terms of how the updated Qn+1 is calculated). Several variations on
this technique are described below.

The development given here follows the derivation described by Melson et al.
Suppose we seek to solve an equation of the form:

@Q

@t
= L(Q) (A.95)

where L(Q) is a collection of uxes and source terms similar to that given by the
Runge-Kutta time marching scheme. The physical time derivative term is approximated
by a discrete operator of the form:

@Q

@t
=

1

�t

MX
m=0

amQ
n+1�m

!
=

1

�t

h
a0Q

n+1 +E(Qn; Qn�1; :::; Qn+1�m)
i

(A.96)

Here E(Q) represents the portion of the discrete approximation which involves values of
the dependent variable Q evaluated from previous time steps.

If we interpret the explicit time marching scheme in the following form:

Qn+1 = Qn +�tR(Q) (A.97)

where R(Q) is the summation of convective, di�usive, and dissipative uxes, and internal
source terms. For the implicit algorithm, the time step � becomes a pseudo time step used
in an iterative fashion to construct the time dependent solution according to the physical
time step �T . In this case, the algorithm becomes:

Qn+1 = Qn +��(
@Q

@t
+R(Q)) (A.98)

If we approximate the physical time derivative term with the discrete operator described
above, we get:

Qn+1 = Qn +��(
1

�t
[a0Q

n+1 +E(Q)] +R(Q)) (A.99)

and can consequently develop a new implicit-like equation for the term Qn+1 as:

Qn+1 =

�
Qn +��(1

�t [E(Q)] +R(Q))
�

1���(1
�T [a0])

(A.100)

A number of algorithms can now be developed based on the choice of discrete
approximation to the physical time derivative term. Based on the work of Melson et al.,
this study was limited to approximations of both �rst and second order. Based on linear
stability analysis, the algorithm can be made to be unconditionally stable for either �rst or
second order accurate representations of the physical time derivative term. Several higher
order approximations were found by Melson et al. to be conditionally stable, and require
the added burden of storing more than 3 time levels of data to complete the algorithm.

NASA CR{206600 231

i

j

55555555555555555B
B
B
B
B
B
B
B
B
B
B
B

Mesh Block
Boundary

Phantom Cells

P
ha

nt
om

 C
el

ls

Boundary Conditions

"Corner"
Cell

Figure A.7: 2-D mesh block phantom cell representation.

In every case tested, the modi�ed implicit scheme described by Melson was more
robust than the direct implicit scheme described by Arnone. Unfortunately, instabilities
were found to occur for both algorithms under conditions which were believed to be in the
unconditionally stable regime for each algorithm. It appears that a more thorough
investigation of the stability characteristics of the iterative implicit algorithm should be
performed to isolate the causes of the intermittent unstable behavior.

A.5 Boundary Conditions

In this section, the various types of boundary conditions utilized in the ADPAC analysis
are described in general. Before describing the individual boundary conditions, it may be
useful to describe how the boundary conditions are imposed in the discrete numerical
solution. Finite volume solution algorithms such as the ADPAC program typically employ
the concept of a phantom cell to impose boundary conditions on the external faces of a
particular mesh block. This concept is illustrated graphically for a 2-D mesh
representation in Figure A.7. Boundary condition speci�cations control the ow variables
for the phantom cells adjacent to the mesh block boundary. \Corner" phantom cells
cannot be controlled through boundary conditions, but must be updated to accurately
compute grid point averaged values.

Some comments concerning the speci�cs of numerically treating block boundaries
are in order at this point. Arti�cial damping is treated at inow/outow block boundaries
by prescribing zero dissipation ux along the boundary to preserve the globally
conservative nature of the solution. For inter-block communication, dissipative uxes are
also communicated between blocks to prevent inadequate numerical damping at inner
block boundaries. Implicit residual smoothing is applied at all block boundaries by
imposing a zero residual gradient (i.e. (dR=dz) = 0:0) condition at the boundary.

232 NASA CR{206600

A phantom cell is a �ctitious neighboring cell located outside the extent of a mesh
which is utilized in the application of boundary conditions on the outer boundaries of a
mesh block. Since ow variables cannot be directly speci�ed at a mesh surface in a �nite
volume solution (the ow variables are calculated and stored at cell centers), the boundary
data speci�ed in the phantom cells are utilized to control the ux condition at the cell
faces of the outer boundary of the mesh block, and, in turn, satisfy a particular boundary
condition. All ADPAC boundary condition speci�cations provide data values for phantom
cells to implement a particular mathematical boundary condition on the mesh. Another
advantage of the phantom cell approach is that it permits unmodi�ed application of the
interior point scheme at near boundary cells.

A.5.1 Standard Inow/Outow Boundary Procedures

Inow and exit boundary conditions are applied numerically using characteristic theory. A
one-dimensional isentropic system of equations is utilized to derive the following
characteristic equations at an inow/outow boundary:

@C�

@t
� (vn � a)

@C�

@n
= 0; (A.101)

@C+

@t
+ (vn + a)

@C+

@n
= 0 (A.102)

where:

C� = vn � 2a

 � 1
; C+ = vn +

2a

 � 1
(A.103)

Numerically, the equations are solved in a locally orthogonal coordinate system which is
normal to the cell face of interest (indicated by the subscript and coordinate n). The
procedure is essentially then a reference plane method of characteristics based on the
Reimann invariants C� and C+.

For subsonic normal inow, the upstream running invariant C� is extrapolated to
the inlet, and along with the equation of state, speci�ed total pressure, total temperature,
and ow angles the ow variables at the boundary may be determined. For
turbomachinery ow calculations, the ow angles are representative of the spanwise ow
and the pitchwise (blade-to-blade) ow.

Outow boundaries require a speci�cation of the exit static pressure. In this case,
the downstream running invariant C+ is used to update the phantom cells at the exit
boundary. Velocity components parallel to the cell face are extrapolated to the phantom
cell from the neighboring interior cells.

It should be mentioned that all of the characteristic boundary schemes utilize a
local rotated coordinate system which is normal (hence the subscript n) to the bounding
cell face.

NASA CR{206600 233

A.5.2 Solid Surface Boundary Procedures

All inviscid solid surface must satisfy the condition of no convective ux through the
boundary (an impermeable surface). Mathematically, this is expressed as:

~V � ~n = 0 (A.104)

The phantom cell velocity components are thus constructed to ensure that the cell face
average velocities used in the convective ux calculation satisfy the no throughow
boundary speci�cation at the bounding surface. A simpli�ed form of the normal
momentum equation is used to update the phantom cell pressure as:

@p

@n
= 0 (A.105)

It should be noted that this condition is theoretically oversimpli�ed, but our experience
using more complicated forms of the normal momentum equation indicate that
numerically the results are quite accurate.

All viscous solid surfaces must satisfy the no slip boundary condition for viscous
ows:

~Vrel = 0 (A.106)

where ~Vrel is the relative ow velocity, ~V � r!. No convective ux through the boundary
(an impermeable surface) is permitted. The phantom cell velocity components are thus
constructed to ensure that the cell face average velocities used in the convective ux
calculation are identically zero. The phantom cell pressure is simply extrapolated based
on the boundary layer ow concept dp=dn = 0. The phantom cell density or temperature
is imposed by assuming either an adiabatic surface dT=dn = 0 or a speci�ed surface
temperature, which suggests that the phantom cell temperature must be properly
constructed to satisfy the appropriate average temperature along the surface.

A.5.3 Inter-block Communication Boundary Procedures

For the multiple-block scheme, the solution is performed on a single grid block at a time.
Special boundary conditions along block boundaries are therefore required to provide
some transport of information between blocks. This transport may be accomplished
through one of four types of procedures in the ADPAC code. Each procedure applies to a
di�erent type of mesh construction and ow environment, and details of each approach are
given in Reference [1].

For neighboring mesh blocks which have coincident mesh points along the interface
separating the two blocks, a simple direct speci�cation of the phantom cell data based on
the near boundary cell data from the neighboring block has been used successfully
(PATCH boundary condition). Each phantom cell in the block of interest has a direct
correspondence with a near boundary cell in the neighboring mesh block, and the block
coupling is achieved numerically by simply assigning the value of the corresponding cell in
the neighboring block to the phantom cell of the block of interest. This procedure
essentially duplicates the interior point solution scheme for the near boundary cells, and
uniformly enforces the conservation principles implied by the governing equations. Other

234 NASA CR{206600

boundary conditions related to inter-block communication for endwall treatment ow
calculations are described in Chapter 3.

A.5.4 Non-Reecting Inow/Outow Boundary Condition Procedures

A perplexing aspect of the numerical simulation of turbomachinery ow�elds is the
requirement of specifying inow/outow boundary conditions for a limited computational
domain for machinery which is operating in an essentially unlimited environment. For the
purpose of analyzing these complex ows, the objective was to develop a solution
procedure which satis�es three constraints. First, the boundary procedure must maintain
a physically consistent far �eld ow condition which may be speci�ed by the user. Second,
the solution should be insensitive to the relative position of the computational inlet and
exit boundaries. Third, the boundary conditions should be constructed in a manner which
does not introduce spurious, non-physical reections of traveling waves into the numerical
solution.

Theoretical mathematical foundations for \non-reecting" boundary conditions for
initial value problems can be found in many references ([38], [39] for example). A
number of so-called non-reecting boundary condition procedures have been developed
speci�cally for turbomachinery ow applications have been presented by Erdos et al. [40],
among others.

The non-reecting boundary condition procedure used in ADPAC follows the general
procedure developed by Giles [41], which was later expanded and applied to 3-D
time-dependent turbomachinery ow predictions by Saxer [42]. Reader interested in the
details of the implementation of these boundary conditions into ADPAC should refer to
Reference [2].

A.6 Turbulence Models

As a result of computer limitations regarding storage and execution speed, the e�ects of
turbulence are introduced through an appropriate turbulence model and solutions are
performed on a numerical grid designed to capture the macroscopic (rather than the
microscopic) behavior of the ow. The e�ects of turbulence are introduced into the
numerical scheme by utilizing the Boussinesq approximation [28]:

�t = ��u0v0 = �t
@�u

@y
(A.107)

where �t is the eddy viscosity, resulting in an e�ective calculation viscosity de�ned as:

�e� = �lam + �t (A.108)

The simulation is therefore performed using an e�ective viscosity which combines the
e�ects of the physical (laminar) viscosity and the e�ects of turbulence through the
turbulence model and the turbulent viscosity �t. The turbulent ow thermal conductivity
term is also treated as the combination of a laminar and turbulent quantity as:

ke� = klam + kt (A.109)

NASA CR{206600 235

For turbulent ows, the turbulent thermal conductivity kt is determined from a turbulent
Prandtl number Prt such that:

Prt =
cp�t
kt

(A.110)

The turbulent Prandtl number is normally chosen to have a value of 0.9.

The �rst type of model available in ADPAC is referred to as an algebraic turbulence
model due to the algebraic nature by which the turbulent viscosity is calculated.
Algebraic models are generally the simplest models available for computational
aerodynamic analysis, and are \tuned" based on correlations with at plate turbulent
boundary layers. Unfortunately, the simplicity of the modeling approach limits the useful
applicability of the model to ows which consist primarily of well behaved (non-separated)
wall bounded shear layers. To overcome this limitation, an one-equation turbulence model
was added to ADPAC based on the work of Spalart and Allmaras [43, 44, 45]. A
two-equation k�R turbulence model is also available. These models generally overcome
the limitations of algebraic models and resolve the �t �eld more accurately, but require
substantially greater coding and computer resources to implement. All the
ADPAC turbulence models are described in greater detail in the sections which follow.

A.7 Algebraic Baldwin-Lomax Turbulence Model

A relatively standard version of the Baldwin-Lomax [26] turbulence model is implemented
for the algebraic model used in the ADPAC analysis. This model is computationally
e�cient, and has been successfully applied to a wide range of geometries and ow
conditions. The Baldwin-Lomax model speci�es that the turbulent viscosity be based on
an inner and outer layer of the boundary layer ow region as:

�t =

�
(�t)inner; y � ycrossover
(�t)outer; y > ycrossover

(A.111)

where y is the normal distance to the nearest wall, and ycrossover is the smallest value of y
at which values from the inner and outer models are equal. The inner and outer model
turbulent viscosities are de�ned as:

(�t)inner = �l2j!j (A.112)

(�t)outer = KCcp�FwakeFKleby (A.113)

Here, the term l is the Van Driest damping factor:

l = �y(1� e(�y
+=A+)) (A.114)

! is the vorticity magnitude, Fwake is de�ned as:

Fwake = ymaxFmax (A.115)

where the quantities ymax, Fmax are determined from the function:

F (y) = yj!j[1� e(�y
+=A+)] (A.116)

236 NASA CR{206600

The term y+ is de�ned as:

y+ = y

 s
�j!j

�laminar

!
wall

(A.117)

The quantity Fmax is the maximum value of F (y) that occurs across the boundary layer
pro�le, and ymax is the value of y at which Fmax(y) occurs. The determination of Fmax

and ymax is perhaps the most di�cult aspect of this model for three-dimensional ows.
The pro�le of F (y) versus y can have several local maximums, and it is often di�cult to
establish which values should be used. In this case, Fmax is taken as the maximum value
of F (y) between a y+ value of 100 and 1200. The function FKleb is the Klebano�
intermittency factor given by:

Fkleb(y) = [1 + 5:5(
Ckleby

ymax
)6]�1 (A.118)

and the remainder of the terms are constants de�ned as:

A+ = 26 Ccp = 1:6 Ckleb = 0:3
� = 0:4 K = 0:0168

In practice, the turbulent viscosity is limited such that it never exceeds 1000 times
the laminar viscosity.

In order to properly utilize this turbulence model, a fairly large number of grid cells
must be present in the boundary layer ow region, and perhaps of greater importance, the
spacing of the �rst grid cell o� of a wall should be small enough to accurately account for
the inner \law of the wall" turbulent boundary layer pro�le region (y+ � 5).
Unfortunately, this constraint is often not satis�ed due to grid-induced problems or
excessive computational costs.

Practical applications of the Baldwin-Lomax model for three-dimensional viscous
ow must be made with the limitations of the model in mind. The Baldwin-Lomax model
was designed for the prediction of wall bounded turbulent shear layers, and is not well
suited for ows with massive separations or large vortical structures. There are,
unfortunately, a number of applications for turbomachinery where this model is likely to
be invalid.

A.7.1 Modi�ed Coe�cients Baldwin-Lomax Model

In an e�ort to improve the Baldwin-Lomax model results, changes were made to the
values of two of the model's coe�cients to account for the adverse pressure gradients
occurring in turbomachinery. Based on a sensitivity analysis by Granville [18], the option
to modify the coe�cients in the standard Baldwin-Lomax turbulence model was added to
ADPAC . The coe�cients to be varied are Ccp and CKleb; the standard values for these two
coe�cients are Ccp = 1:6 and CKleb = 0:3 [26]. The model modi�cations were treated in a
similar manner as work presented by Turner and Jennions [46]. In their paper, these
modi�cation to the algebraic model produced results for a transonic fan almost as good as
using a two-equation k�� model.

NASA CR{206600 237

The variation of these model coe�cients with respect to pressure gradient is shown
in Figure 3.3 [18]; the values for Ccp are read o� the left-hand y-axis and range from 1.0 to
1.80, and the values for CKelb are read o� the right-hand y-axis and range from 0.44 to
0.64. The plot shows regions for both favorable and adverse pressure gradients, such that
the values of the coe�cients can be chosen properly for either compressor or turbine
applications.

This modi�cation to ADPAC was accomplished through the addition of two new
input cards: CCP and CKLEB. The default values are set in the code to the standard
Baldwin-Lomax values listed above, and are only changed if the CCP or CKLEB input
lines are read in from the ADPAC input �le. Values entered by the user for these
coe�cients are checked to ensure they are reasonable.

A.7.2 Wall Functions

The Baldwin-Lomax turbulence model currently implemented in the ADPAC code is valid
for many ows of engineering interest provided that adequate mesh resolution is available
to capture the subscale, near-wall viscous ow behavior which is crucial to correctly
predict the overall boundary layer ow characteristics. For most applications, this implies
that the �rst mesh point away from the wall must be located at a value of y+ less than or
equal to 1.0, where y+ is de�ned as:

y+ =
y�wall
�wall

r
�wall
�wall

where �wall represents the viscous shear stress at the wall, and �wall and �wall are the uid
viscosity and density at the wall. Unfortunately, for many cases it is not possible or
feasible to comply with this restriction due to tradeo�s between minimizing both the
overall number of grid points and mesh stretching ratios. Additional computational
considerations must be given for time-dependent ows, where the maximum allowable
time step is often dictated by the near-wall mesh spacing. The wall function method is
widely used as an approach towards resolving the inuence of the near-wall ow behavior
without actually discretizing the inner portion of the boundary layer ow. The wall
function method is, quite simply, an empirical speci�cation of the wall shear stress based
on local near-wall ow characteristics. This approach has several advantages including a
computational savings (both CPU time and memory), and by providing a means by which
additional empirical information about a particular ow may be introduced to the
numerical solution (e.g. surface roughness modeled by a modi�ed wall shear stress
relation) at little or no additional cost. Wall function techniques for turbulence models
have been proposed and used by many authors including Spalding [47], Wolfshtein [48],
Patankar and Spalding [49], and Launder and Spalding [50].

The implementation of the wall function procedure in the ADPAC code is based on
a rather novel approach involving the manipulation of the near-wall eddy viscosity. The
\standard" method for implementing wall functions is to relax the no-slip wall boundary
condition (allow a slip velocity at the wall) based on the requirement of no normal ow
and the speci�ed wall shear stress. This approach often requires speci�c modi�cations to
the turbulence model, near-wall boundary conditions, viscous stress calculation, and
energy equation solution routines. The �nite volume formulation utilized in the

238 NASA CR{206600

i

j

Mesh Block
Boundary

Phantom Cells

555555555555555
555555555555555

i, 3

i, 2

i, 1

Flow Velocity, U
Grid Point

Cell Center

Figure A.8: Near-wall computational structure for wall function turbulence model.

ADPAC code allows for a number of options when implementing the wall functions
formula. An illustration of the near-wall computational con�guration for the ADPAC code
is given in Figure A.8.

The objective during the ADPAC wall function implementation was to minimize the
number of routines which required modi�cation in order to implement the wall function
model. This goal suggested that it was desirable to maintain the no-slip wall boundary
condition in its original form, and hence the speci�ed wall shear stress was implemented
by manipulating the value of the phantom cell turbulent viscosity.

The ADPAC approach can be illustrated most easily by considering the viscous ow
over a at plate as shown in Figure A.8. A shear stress term at the wall such as:

�xy = �
@u

@y

is calculated numerically as:

�wall � �u
�y

where, in this case, � represents the combined turbulent and laminar viscosities:

�wall =
1

2
(�i;2 + �i;1)

(ui;2 � ui;1)

�y

The subscript i; j indicates a mesh oriented cell-centered ow value, where i; 1 is the value
in the phantom cell, and i; 2 is the value at the �rst interior cell near the wall. As
mentioned, many computational schemes satisfy the shear stress requirement by
modifying the wall velocity boundary condition through manipulation of the term ui;1 in
the example above. For three-dimensional ows, this becomes even more complicated as
multiple velocity components must be adjusted to satisfy the overall wall shear stress. The
ADPAC implementation instead modi�es the wall turbulent viscosity boundary condition
through manipulation of the single term �i;1. This implies that the turbulent viscosity at

NASA CR{206600 239

the wall is non-zero, which violates the normal speci�cation. However, since the turbulent
viscosity is used exclusively in the calculation of the wall shear stress and heat conduction
terms, the resulting calculations are consistent with the desired shear stress speci�cation
both in magnitude and direction, since the near-wall velocities drive the wall shear stress
directly. This formulation, in e�ect, also implies a wall function based heat ux. For
calculations in which heat transfer is unimportant, this e�ect is negligible. The inuence
of this approach on ows with heat transfer may be tested in future studies.

The shear stress speci�cation used in the present application of wall functions is
based on the following formula for the wall shear stress coe�cient:

cf = �0:001767 + 0:03177=Ren + 0:25614=Re2n

The term Ren is the Reynolds number based on near-wall velocity, density, and viscosity,
where the length scale is the normal distance from the wall to the �rst interior domain
calculation cell. The wall shear stress may then be calculated from the formula:

�wall = 0:5 � cf � � � V 2
rel

where Vrel is the near-wall relative ow total velocity.

A.8 One-Equation Spalart-Allmaras Turbulence Model

The turbulence model was modi�ed slightly from its original presentation by Spalart and
Allmaras [43] for incorporation into ADPAC . A brief review of the equations and
constants comprising the turbulence model are presented below for review including the
modi�cations for ADPAC .

The equation to calculate the eddy viscosity (�t) is given by:

�t = �~�fv1; fv1 =
�3

�3+c3v1
; � � ~�

�
(A.119)

where � is the kinematic viscosity, and ~� is the working variable in the transport equation
outlined below. The original Spalart-Allmaras formulation of the ~� transport equation
follow as:

D~�

Dt
= cb1 [1� ft2] ~S~�| {z }

production

+
1

�

h
r � ((� + ~�)r~�) + cb2 (r~�)2

i
| {z }

di�usion

�
�
cw1fw � cb1

�2
ft2

� �
~�

d

�2
| {z }

destruction

+ ft1�U
2| {z }

trip

(A.120)

The auxiliary equations needed to complete the model include:

~S � S +
~�

�2d2
fv2; fv2 = 1� �

1 + �fv1
; S =

���r� ~V
��� (vorticity) (A.121)

240 NASA CR{206600

where d is the distance to the nearest viscous wall as calculated at the beginning of the
ADPAC run.

fw = g

"
1 + c6w3
g6 + c6w3

#1=6
; g = r + cw2(r

6 � r); r � ~�
~S�2d2

(A.122)

Since fw reaches a constant for large values of r, r is upper bounded by the value of 10.

ft2 = ct3 exp
�
�ct4�2

�
(A.123)

The capability of the Spalart-Allmaras turbulence model to incorporate a trip
function is currently not part of the ADPAC implementation, but is presented below for
completeness. The trip function ft1 is represented by:

ft1 = ct1gt exp

�ct2 !2

t

�U2

h
d2 + g2t d

2
t

i!
(A.124)

gt � min

�
0:1;

�U

!t�x

�
(A.125)

where: dt is the distance to the trip, !t is the wall vorticity at the trip, �U is the
di�erence between the velocity at the current point and the trip location, and �x is the
grid spacing along the wall at the trip point.

The original constants for this model are listed below:

cb1 = 0:1355 � = 2=3 cb2 = 0:622 � = 0:41

cw1 =
cb1
�2

+ 1+cb2
� cw2 = 0:3 cw3 = 2 cv1 = 7:1

ct1 = 1 ct2 = 2 ct3 = 1:1 ct4 = 2

In a reprint of the original model formulation [44], Spalart recommended the
following modi�cations to two of the constants:

ct3 = 1:2 ct4 = 0:5 (A.126)

Additional modi�cations were also noted to help prevent ~S from going negative [45]. In
this update of the model, the fv2(�) term is rede�ned below where cv2 is equal to 5:

fv2 =

�
1 +

�

cv2

��3
(A.127)

In order to match the �nite volume approach coded in ADPAC , it is better to place
the original transport equation presented by Spalart and Allmaras in a \conservative"
form using �~� instead of ~� only. Multiply both sides of the equation by � and make use of
continuity:

�
D~�

Dt
=

D(�~�)

Dt
� ~�

D�

Dt
=

D(�~�)

Dt
= �(RHS)

NASA CR{206600 241

For convenience, the numerical solution of the Spalart-Allmaras turbulence
transport equation is based on the slightly altered conservation statement given below:

D(�~�)

Dt
= �cb1 [1� ft2] ~S~� +

�

�

h
r � ((� + ~�)r~�) + cb2 (r~�)2

i
��

�
cw1fw � cb1

�2
ft2

��
~�

d

�2

+ �ft1�U
2 (A.128)

Before proceeding, it is useful to rearrange the di�usion terms by noting the identity:

r � (~�r~�) = (r~�)2 + ~�(r2~�) (A.129)

such that the governing transport equation can be restated as:

D(�~�)

Dt
= �cb1 [1� ft2] ~S~� +

�

�

h
r � ((� + (1 + cb2)~�)r~�)� cb2~�r2~�

i
��

�
cw1fw � cb1

�2
ft2

��
~�

d

�2
+ �ft1�U

2 (A.130)

Additional details of the implementation of the Spalart-Allmaras model into
ADPAC (including the derivation of the Spalart-Allmaras transport equation for
generalized coordinates, the implicit discretization of the Spalart-Allmaras transport
equation, and the linearization of the Spalart-Allmaras transport equation source term)
can be found in Reference [51].

Since this turbulence model, as do many, requires the distance to the nearest viscous
wall to be known, a searching routine was developed to calculate this minimum distance
for all computational cells in the mesh. Due to the exibility of the multi-block capability
and parallelization of ADPAC , this task was not as straight forward as might �rst appear.
Despite the length of time needed to calculate the distance �eld, this calculation only
needs to be performed once and the resulting values will be included in the turbulence
model restart �le, eliminating the need to execute the distance �nding routine on the
restart of a simulation. In fact it may be advisable to initially run ADPAC with zero
iterations to calculate the near-wall distance �eld. These results can be checked in the
PLOT3D output �le (case.p3d1eq) after which the solution can be restarted.

The speci�cation of inlet boundary conditions and initial conditions for the
turbulence model transport variable (~�) is handled by specifying a value of the
non-dimensional variable � (~�=�). By specifying �, the user does not need to account for
variations in ~� caused by changes in PREF, TREF, DIAM, or any other reference quantity
used for non-dimensionalization. It was found in the cases tested, that a small initial value
of � does not provide a strong enough trigger for the production term and causes the
solution to converge to the trivial solution (~� = 0:0), resulting in a laminar ow �eld.
Most cases are run using an initial value of � equal to 20 with inlet values being speci�ed
at �in = 1.

A.9 Two-Equation Turbulence Model

Limitations associated with the implementation of the algebraic (Baldwin-Lomax)
turbulence model in the ADPAC code prompted the development of an advanced

242 NASA CR{206600

(two-equation) turbulence modeling capability. As part of this study, an advanced
turbulence model was incorporated into the ADPAC code to permit accurate prediction of
a wider range of ow conditions, and hopefully improve the ability to predict highly
loaded fan and compressor blade row ow�elds. Initially, this e�ort was directed at
primarily two-equation turbulence models (k � �; q � !, etc.) but was not necessarily
intended to be limited to these models. Of particular interest was the use of \pointwise"
turbulence models which do not require predetermination of the location of the nearest
solid surface, as do most turbulence models. This feature provides a signi�cant
simpli�cation of the turbulence modeling problems associated with a multiple blocked
mesh code such as ADPAC .

The form of the two-equation turbulence model used in the ADPAC advanced
turbulence model implementation was based on the two-equation k�R model described
by Goldberg [52]. This is essentially an extension of the Baldwin-Barth [53] equation
system as implemented by Goldberg [52]. The transport equations de�ning this model are
derived from the \standard" form of the k � � turbulence model equations as follows (see
e.g. Wilcox [54])

@(��~k)

@t
+r � (��~~V ~k) =

r � [(�+ �t
�k

)r~k] + P � (��~k)2

�

@(���)

@t
+r � (��~~V �) =

r � (�+ �t
��
)r�+ (2� C�1)

�
~k
� (2� C�2)��

~k

where P is the turbulent kinetic energy production term de�ned (for a Cartesian
coordinate system) as:

P = �t[(r~u+
@~~V

@x
) � @

~~V

@x
+ (r~v + @~~V

@y
) � @

~~V

@y
+ (r ~w +

@~~V

@z
) � @

~~V

@z
� 2

3
(r � ~~V)2]

�2

3
��~k(r � ~~V)

By de�ning a new variable R as

R =
k2

�
(A.131)

and noting the identity
DR
R =

2Dk

k
� D�

�
: (A.132)

Baldwin and Barth subsequently developed a transport equation for R from the k and �
equations. The �nal form of the k �R equation system can be expressed as:

@(��~k)

@t
+r � (��~~V ~k) =

r � [(�+ �t
�k

)r~k] + P � (��~k)2

��R

NASA CR{206600 243

@(��R)
@t

+r � (��~~VR) =

(�+
�t
��
)r2R� ��

��
r�t � rR+ (2� C�1)

RP
~k
� (2� C�2)��

~k

where:

R = ~k2=�

In developing the di�usion terms in the R equation certain terms were omitted based on
order of magnitude considerations (although the actual steps used in the derivation are
not obvious from the authors' description in Reference [53]).

Goldberg subsequently developed a \pointwise" turbulence model based on the
k �R equation system based on early work by Launder and Sharma [55]. Here the
adjective \pointwise" implies that the calculation of the turbulent viscosity is only
dependent on ow data which is local to any point in the ow. Traditionally, most
turbulence models require a calculation to determine the physical distance to the nearest
wall or shear layer centerline. Since the ADPAC code possesses arbitrary numbers of mesh
blocks, wall boundaries, etc., determining the distance from any given mesh point to the
nearest wall is a formidable computational task, and therefore, the pointwise turbulence
model provides an enormous simpli�cation.

The calculation (as reported by Goldberg [52]) of the turbulent viscosity proceeds as
follows:

�t = C�f���R

C�1 = 1:44

C�2 = 1:92

�k = 1:0

�� = 1:3

C� = 0:09

f� = f�(Rt) =
1� e�A�R2

t

1� e�A�R2
t

A� = 2:5x10�6

A� = 0:2

Rt =
��R
�

=
k2

��

where Rt is, in e�ect, the turbulence Reynolds Number.

The form of the k �R model is similar to other two-equation models, and the code
was constructed so that it can be rapidly altered to solve other two-equation models
(k � �; q � !, etc.) as needed. The k �R model is particularly attractive due to the
simpli�ed solid surface boundary conditions.

k = 0 R = 0 (A.133)

244 NASA CR{206600

and ow�eld initialization
k � 1x10�5 R � 1x10�6 (A.134)

Numerical implementation of the two-equation turbulence modeling strategy
involves several di�erences from the solution procedure described for the
Reynolds-averaged Navier-Stokes equations. The k�R equations were advanced in time
using the same �nite volume discretization and Runge-Kutta time marching procedures
described in previous sections. No added dissipation was used for the k�R equations.
Instead, the convective cell face ux evaluations were performed using a �rst order upwind
approximation for the ow variables on the cell face. The k and R variables themselves
were limited by enforcing the conditions k;R � 1x10�6. The production term P was also
required to have a nonnegative value.

NASA CR{206600 245

246 NASA CR{206600

Appendix B

PARALLEL ADPAC EXECUTION
SCRIPT

A sample UNIX shell script illustrating the basic steps required for compiling and running
the ADPAC code in serial and in parallel for both the MPICH and a proprietary MPI
libraries is given below. This script was developed for Silicon Graphics ORIGIN class
multiprocessor computers. Similar scripts for other popular UNIX-based workstations can
be created easily by modifying this script for other computing platforms.

#!/bin/csh

#set echo

#

#

cat <</eof

This is a global script for compiling various flavors of

ADPAC on Multiprocessor Silicon Graphics Workstations:

This script includes compilation for:

1. Serial code

2. Parallel execution using MPICH and APPLMPI-0.3

3. Parallel execution using SGI's MPI and APPLMPI-0.3

The script assumes that you have the following files available:

ADPAC_V1.0.tar.Z --- compressed ADPAC source distribution

sdblib.tar.Z --- compressed SDBLIB source distribution

csdb.tar.Z --- compressed CSDB source distribution

mpich.tar.gz --- gzip'd MPICH source distribution

applmpi-0.3.tar.Z --- compressed APPLMPI source distribution

The script provides automatic de-compression and extraction for

each utility prior to compilation.

A simple "bump" test case is provided to verify the proper

operation of the code following execution. The user should

check to ensure the correct execution was performed and

the flow solution appears resonable.

Like all scripts, there are some inherent assumptions here:

The compiler on the machine is set up to be f90 for ADPAC, some machines

only have f77 - which could cause a problem. This might

NASA CR{206600 247

require a respecification in some of the Makefiles. When in doubt,

make sure that the F77 environment variable is set to either f77 or f90.

The demo cases may not work if your computer requires some form of

"batch" job submission (PBS, NQS, LSF, etc.)

/eof

#

echo " "

echo " "

echo "==="

echo "Beginning ADPAC compile script for SGI installation"

echo "==="

echo " "

echo " "

sleep 1

#

#---> Try to detect the proper FORTRAN compiler to use

#

echo "Looking for the fortran compiler."

set tstf90 = `which f90 | grep "f90" | grep -v "not in" | wc -l`

set tstf77 = `which f77 | grep "f77" | grep -v "not in" | wc -l`

if ($tstf90 == 1) then

echo "Found f90."

setenv F77 f90

else

echo "No f90 found"

if ($tstf77 == 1) then

echo "Found f77."

setenv F77 f77

endif

endif

if ($tstf90 == 0 && $tstf77 == 0) then

echo "Neither f90 or f77 found. Cannot determine FORTRAN compiler"

echo "Unable to continue - Aborting."

exit(1)

endif

sleep 1

#

#---> Make the SDBLIB Stuff

#

echo " "

echo " -------------------------------------"

echo " Extracting the SDBLIB FORTRAN Library"

echo " -------------------------------------"

echo " "

sleep 1

/bin/rm -r -f sdblib

zcat sdblib.tar.Z | tar xvf -

(cd sdblib; make clean)

(cd sdblib; /bin/rm -f *.a)

(cd sdblib; make)

#

#---> Make the CSDB Stuff

#

echo " "

echo " -----------------------------"

echo " Extracting the CSDB C Library"

echo " -----------------------------"

echo " "

sleep 1

/bin/rm -r -f csdb

zcat csdb.tar.Z | tar xvf -

248 NASA CR{206600

(cd csdb; make clean)

(cd csdb; /bin/rm -f *.a)

(cd csdb; make)

#

#---> Make the MPICH stuff

#

echo " "

echo " --"

echo " Extracting the MPICH Communication Libraries"

echo " --"

echo " "

sleep 1

/bin/rm -r -f mpich

/usr/sbin/gzip -d mpich.tar.gz

tar xvf mpich.tar

/usr/sbin/gzip mpich.tar

(cd mpich; make clean)

(cd mpich; /bin/rm -f lib/IRIX64/ch_shmem/libmpi.a)

(cd mpich; ./configure -arch=IRIX64 -cc="cc -64 -mips4"

-fc="f77 -64 -mips4" -opt="-O2" -device=ch_shmem)

(cd mpich; make)

#

#---> Make the Serial ADPAC Stuff

#

echo " "

echo " --"

echo " Extracting the ADPAC FORTRAN Source Code"

echo " --"

echo " "

sleep 1

/bin/rm -r -f ADPAC_V1.0

zcat ADPAC_V1.0.tar.Z | tar xvf -

(cd ADPAC_V1.0; make clean)

(cd ADPAC_V1.0; /bin/rm -f adpac_power_challenge

adpac_power_challenge_mpi adpac_power_challenge_mpich)

(cd ADPAC_V1.0; pmake power_challenge)

#

#---> Make the applmpi-0.3 library for MPICH

#

echo " "

echo " --------------------------------"

echo " Extracting the APPLMPI Libraries"

echo " --------------------------------"

echo " "

sleep 1

/bin/rm -r -f applmpi-0.3

zcat applmpi-0.3.tar.Z | tar xvf -

(cd applmpi-0.3; make clean)

(cd applmpi-0.3; make clobber)

(cd applmpi-0.3; /bin/rm -f lib/*.a)

setenv MPICH_ROOT $PWD"/mpich"

setenv SGIMP ON

(cd applmpi-0.3; make)

(cd applmpi-0.3/src; mv libapplmpi.a libapplmpich.a)

(cd applmpi-0.3/lib; ln -s ../src/libapplmpich.a .)

echo " "

echo " "

echo "COMPILE MESSAGE: Error code 1 is expected from the applmpi-0.3 make"

echo " "

NASA CR{206600 249

echo " "

#

#---> Now make the ADPAC Parallel MPICH executable

#

echo " "

echo " ---------------------------------------"

echo " Compiling the ADPAC+MPICH Parallel Code"

echo " ---------------------------------------"

echo " "

sleep 1

(cd ADPAC_V1.0; pmake power_challenge_mpich)

#

#---> Test to see if the SGI MPI 64 bit libraries have been installed

#

echo " "

echo " --"

echo " Testing for the SGI MPI 64 bit Libraries"

echo " --"

echo " "

sleep 1

echo " "

echo "Looking for the SGI MPI implementation"

set tstsgimpi = `versions mpi | grep mpi.sw64 | wc -l`

if ($tstsgimpi == 2) then

echo "Found SGI MPI 64 Bit Libraries"

echo "Continuing with SGI MPI Parallel compilation"

#

#---> Now make the "Fake" MPICH directory using SGI MPI code

#

/bin/rm -r -f sgimpi

mkdir sgimpi

mkdir sgimpi/include

mkdir sgimpi/lib

ln -s /usr/include/mpi.h sgimpi/include/mpi.h

ln -s /usr/lib64/libmpi.a sgimpi/lib/libmpi.a

#

#---> Now remake the applmpi-0.3 library for the SGIMPI MPI

#

echo " "

echo " --"

echo " Re-make APPLMPI with the SGI MPI Libraries"

echo " --"

echo " "

sleep 1

(cd applmpi-0.3; make clean)

(cd applmpi-0.3; make clobber)

(cd applmpi-0.3; /bin/rm lib/libapplmpi.a)

setenv MPICH_ROOT $PWD"/sgimpi"

(cd applmpi-0.3; make)

#

#---> Now finally make the sgimpi ADPAC Parallel executable

#

echo " "

echo " ---"

echo " Compiling the ADPAC+SGI/MPI Parallel Code"

250 NASA CR{206600

echo " ---"

echo " "

sleep 1

(cd ADPAC_V1.0; pmake power_challenge_mpi)

#

#---> In case the SGI MPI 64 bit libraries were not found..

#

else

echo "Unable to find SGI MPI 64 bit libraries"

endif

#

#---> Test the serial and parallel codes using the NBUMP test case)

#

echo " "

echo " ------------------------------"

echo " Extracting the NBUMP test case"

echo " ------------------------------"

echo " "

sleep 1

/bin/rm -r -f NBUMP

zcat NBUMP.tar.Z | tar xvf -

#

#---> Serial ADPAC test run

#

echo " "

echo " ------------------------------------"

echo " Executing the Serial ADPAC test case"

echo " ------------------------------------"

echo " "

sleep 1

(cd NBUMP; /bin/rm -f Nbump.out.serial)

(cd NBUMP; ../ADPAC_V1.0/adpac_power_challenge < Nbump.input > Nbump.out.serial)

echo " "

echo "--"

echo "Serial ADPAC Test case ran to completion"

echo "--"

echo " "

#

#---> Parallel ADPAC test run using MPICH

#

echo " "

echo " --"

echo " Executing the Parallel ADPAC test case Using MPICH"

echo " --"

echo " "

sleep 1

(cd NBUMP; /bin/rm -f Nbump.out.mpich)

(cd NBUMP; /bin/cp Nbump.input adpac.input)

(cd NBUMP; ../mpich/lib/IRIX64/ch_shmem/mpirun -np 4

../ADPAC_V1.0/adpac_power_challenge_mpich < adpac.input > Nbump.out.mpich)

echo " "

echo "---"

echo "Parallel ADPAC Test using MPICH ran to completion"

echo "---"

echo " "

#

#---> Parallel ADPAC test run using SGI MPI

#

echo " "

echo " --"

echo " Executing the Parallel ADPAC test case Using SGI MPI"

echo " --"

echo " "

NASA CR{206600 251

sleep 1

(cd NBUMP; /bin/cp Nbump.input adpac.input)

(cd NBUMP; /bin/rm -f Nbump.out.mpi)

(cd NBUMP; mpirun -np 4 ../ADPAC_V1.0/adpac_power_challenge_mpi <

adpac.input > Nbump.out.mpi)

echo " "

echo "---"

echo "Parallel ADPAC Test using SGI MPI ran to completion"

echo "---"

echo " "

#

#---> All Done!

#

echo " "

echo "**"

echo "**"

echo "** **"

echo "** ADPAC SGI Compile/Execute Script completed **"

echo "** **"

echo "**"

echo "** **"

echo "** The user should verify that all portions **"

echo "** of the analysis completed sucessfully and **"

echo "** the flow solution appears resonable. **"

echo "** **"

echo "**"

echo "**"

echo " "

252 NASA CR{206600

This publication is available from the NASA Center for AeroSpace Information, (301) 621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Final Contractor Report

Unclassified

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135–3191

February 1999

NASA CR—1999-206600

E–11089

268

A12

ADPAC v1.0 – User's Manual

Edward J. Hall, Nathan J. Heidegger, and Robert A. Delaney

Computational fluid dynamics; Stall; Turbomachinery

WU–538–03–11–00
NAS3–27394 Task 15

Allison Engine Company
P.O. Box 420
Indianapolis, Indiana

Unclassified -Unlimited
Subject Category: 02 Distribution: Nonstandard

Project Manager, Christopher J. Miller, Structures and Acoustics Division, NASA Lewis Research Center, organization
code 5940, (216) 433–6179.

The overall objective of this study was to evaluate the effects of turbulence models in a 3–D numerical analysis on the
wake prediction capability. The current version of the computer code resulting from this study is referred to as ADPAC v7
(Advanced Ducted Propfan Analysis Codes – Version 7). This report is intended to serve as a computer program user’s
manual for the ADPAC code used and modified under Task 15 of NASA Contract NAS3–27394. The ADPAC program is
based on a flexible multiple-block grid discretization scheme permitting coupled 2-D/3–D mesh block solutions with
application to a wide variety of geometries. Aerodynamic calculations are based on a four-stage Runge-Kutta time-
marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a
multigrid procedure. Turbulence models now available in the ADPAC code are: a simple mixing-length model, the
algebraic Baldwin-Lomax model with user defined coefficients, the one-equation Spalart-Allmaras model, and a two-
equation k-R model. The consolidated ADPAC code is capable of executing in either a serial or parallel computing mode
from a single source code.

